
13th International Conference

Logic and Applications

LAP 2024

September 23 - 27, 2024

Dubrovnik, Croatia

Book of Abstracts

Course directors:

� Zvonimir �iki¢, University of Zagreb

� Andre Scedrov, University of Pennsylvania

� Silvia Ghilezan, University of Novi Sad

� Zoran Ognjanovi¢, Mathematical Institute of SASA, Belgrade

� Thomas Studer, University of Bern



Book of Abstracts of the 13th International Conference on Logic and
Applications - LAP 2024, held as a hybrid meeting hosted by the Inter
University Center Dubrovnik, Croatia, September 23 - 27, 2024.

LATEX book of abstracts preparation and typesetting:

� Du²an Gaji¢, University of Novi Sad

� Simona Proki¢, University of Novi Sad

LAP 2024 Web site: https://lap.math.hr/LAP2024/ Maintained by
Marko Horvat, University of Zagreb, and Simona Proki¢, University of Novi
Sad.

1

https://lap.math.hr/LAP2024/


Contents

1 Tin Adle²i¢
Logicism and the Philosophy of Mathematics 4

2 Tea Arvaj, Zvonko Iljazovi¢
Semicomputable irreducible continua 5

3 Tajana Ban Kirigin, Jesse Comer, Max Kanovich, Andre Scedrov,
Carolyn Talcott
Time-Bounded Resilience: Formalization, Computational
Complexity and Implementation 7

4 Péter Battyányi
On feasibility in non-standard Heyting arithmetic 9

5 Andrej Bauer
Puzzles in parameterized realizability 12

6 Merium Bishara, Lia Kurtanidze, Mikheil Rukhaia, Lali Tibua
Probabilized Unranked Sequent Calculus 13

7 Sanda Buja£i¢ Babi¢, Tajana Ban Kirigin
Measuring Node Integration in Directed Graphs and the
Applications 16

8 Konrad Burnik, Zvonko Iljazovi¢, Lucija Validºi¢
Computable metric bases 18

9 Vedran �a£i¢, Matea �elar, Marko Horvat, Zvonko Iljazovi¢
Approximating semicomputable graphs in computable metric
spaces 20

10 Vedran �a£i¢, Marko Doko
A certi�ed algorithm for strati�cation 21

11 Isabela Dr mnesc, Tudor Jebelean, Sorin Stratulat
Formal Certi�cation of Synthesized Sorting Algorithms 22

12 Besik Dundua
Fuzzy Pattern Calculus 25

13 Silvia Ghilezan
Proofs-as-programs: from logic to AI 27

2



14 Valentina Harizanov
E�ective analogue of an ultraproduct of structures 29

15 Anela Loli¢
Interpolation Properties of Proofs with Cuts 31

16 Matej Mihel£i¢, Adrian Satja Kurdija
Storytelling and extensions 34

17 Du²ko Pavlovi¢
Learning machines build self-con�rming beliefs 36

18 Adrian Satja Kurdija, Matej Mihel£i¢
Locality-based moral planning with LTL values 37

19 Andre Scedrov
Aspects of Non-Associative Linear Logic 39

20 Teo �estak
General frames for interpretability logic IL 40

21 Zvonimir �iki¢
Is there mathematical concepts that are real? 41

22 Carolyn Talcott
Threat models and moving target defense for the CoAP messaging
protocol 43

23 Vladimir Tasi¢
Brouwer-Weyl Continuum Through 3D Glasses: Geometry, Compu-
tation, General Relativity 44

24 Henry Towsner
Interpreting Sequent Calculus Proofs as Functions 47

25 Karol Wapniarski, Mariusz Urba«ski
Discovering Aristotle's Syllogistic via indirect proofs:
a metatheoretical account 49

26 Dragi²a �uni¢
Understanding the computation at the core of exchange on a trading
venue 52

3
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Logicism is a philosophical standpoint that mathematics can be reduced to
logic. It came into prominence in the works of Gottlob Frege and was later
significantly modified by Bertrand Russell. Russell’s version of logicism can
be best seen in Principia Mathematica, written in collaboration with Alfred
Whitehead. Even though Principia Mathematica was very influential, it did
not provide a satisfactory defense of logicism. At the end of the 20th century,
a modern version of logicism emerged, called neologicism.

In this talk, we will give a short historical survey of logicism and put forward
a new view on its role in the philosophy of mathematics.

References

[1] Frege, G. Begriffsschrift, a formula language, modeled upon that of arith-
metic. in van Heijenoort (ed.): From Frege to Gödel: A source book in
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A topological pair (A,B) of space A and its subspace B is said to have
computable type if, whenever f : A → X is an embedding of A in a com-
putable metric space such that f(A) and f(B) are semicomputable, then f(A)
is computable.

It is known that ([0, 1], {0, 1}) has computable type. In other words, an arc
together with its endpoints has computable type.

However, it is known that a more general result holds:
if K is a continuum chainable from a to b, then (K, {a, b}) has computable
type. That a continuum (i.e. a connected and compact metric space) K is
chainable from a to b means that for every ε > 0 there exist finitely many open
sets C0, . . . , Cn in K whose diameters are less than ε, which cover K, such that
a ∈ C0, b ∈ Cn, and Ci ∩ Cj = ∅ iff |i− j| > 1.

If A is an arc with endpoints a and b, then A is a continuum chainable from
a to b. On the other hand, a continuum K chainable from a to b need not be
an arc (for example topologist’s sine curve).

In this talk we examine more general spaces, namely irreducible continua.
A continuum K is irreducible between a and b, where a, b ∈ K, if there exist no
proper sobcontinua of K that contain both a and b.

We have the following result.

Theorem 1. Let K be a continuum irreducible between a and b. Then the pair
(K, {a, b}) has computable type.

It is known that every computable set contains a dense subset of computable
points. So a question naturally arises: if K is a semicomputable continuum
irreducible between a and b, where a and b are not necesserily computable (then
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K is also not necessarily computable), does K contain at least one computable
point.

Answer to that question is affirmative in the case when K is an arc, which
is shown in [4].

We show that the previuos result also holds for irreducible continua, with
an additional assumption that the continuum K can be shown as a union of its
three proper subcontinua such that no two of them cover K. Furthermore, in
that case K not only contains a computable point, but contains a computably
enumerable subset with non-empty interior in K.

References

[1] D.E. Amir and M. Hoyrup. ”Strong computable type”. In: Comput. 12
(2022), pp. 227–269.
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(2009), pp. 1206–1235.
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Most research on formal system design has focused on optimizing various
measures of efficiency. However, not enough attention has been paid to the
design of systems optimizing resilience, that is, the ability of systems to adapt
to unexpected changes or adversarial disruptions. In our previous work [1], we
formalized the intuitive notion of resilience as a property of cyber-physical sys-
tems. We used a multiset rewriting language with explicit time that is suitable
for the specification and verification of various goal-oriented systems.

A primary challenge in [1] was to formalize the disruptions against which
systems must be resilient. This was accomplished by separating the system
from the environment and distinguishing between rules applied by the system
and rules imposed on the system, such as changes in conditions, regulations, or
mission objectives. Although the related verification problems are undecidable
in general, it was shown that these problems are PSPACE-complete for the class
of balanced systems, in which facts are of bounded size, and the rewrite rules
do not change the configuration size.

In this work, we consider the time-bounded version of the resilience problems,
with the intuition that a resilient system can fulfil its tasks within the given time
bounds. Time-bounded resilience is motivated by bounded model checking and
automated experiments, which can help system designers verify properties and
find counterexamples where their specifications do not satisfy time-bounded
resilience. Moreover, bounded versions of resilience problems arise naturally
when the missions of the systems being modeled are necessarily bounded at
some level.
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In particular, we focus on progressing planning scenarios, where, only a
bounded number of rules can be applied in a single time step. We study the
computational complexity of time-bounded resilience problems for the class of
η-simple progressing planning scenarios (PPS), for which it is simple to check
whether a system configuration is critical. We show that, in the time-bounded
model with n (potentially adversarially chosen) updates, the corresponding
time-bounded resilience problem for the class of η-simple PPSs is complete for
the ΣP

2n+1 class of the polynomial hierarchy, PH [2]. To support the formal mod-
els and complexity results, we perform automated experiments for time-bounded
verification using the rewriting logic tool Maude.
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27–29, 2022, Proceedings, pages 96–113. Springer, 2022.
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As early as in 1934, Skolem [8] proved that, if we add the axioms n < c
(n ∈ N) to first-order arithmetic, in other words, if we demand the existence of
an infinite number, then the resulting theory is consistent [4, 5]. We examine
Heyting arithmetic [3, 9], that is, first-order arithmetic with intuitionistic pred-
icate logic, augmented with these axioms of non-standardness together with a
predicate expressing the property of being feasible. We define feasibility follow-
ing [2]: the property of feasibility is a downward closed property, where 0 is
feasible, and, for all primitive recursive functions, if the arguments are feasible,
then the result should be feasible. Furthermore, the infinite number c is not
feasible.

The overspill principle, due to Robinson, for non-standard Peano arithmetic
states that we are not able to define a proper cut of a model of Peano arithmetic
with an arithmetic formula [5]. In our case, we prove that F , however, defines the
proper cut of standard elements. Of course, F does not belong to the original
language. A theory admits the disjunction property, if, whenever A ∨ B is
derivable for the closed formula A∨B, then either A or B is derivable. Similarly,
we say that for a theory the existential property fulfills, if, whenever ∃xA(x) is
derivable for the closed formula ∃xA(x), then A(t) is derivable for some closed
term t. Constructive, non-standard theories may refute both properties [1,
7]. One of the reasons is that they usually require the fulfillment of axioms
other than the ones considered in this paper, for example transfer principles [1].
However, we have deliberately chosen the simplest axioms that could possibly
be more defendable from a constructive standpoint. As a result of this, our
theory preserves both the disjunction and the existential properties. Formally,
the notion of a feasible term can be defined as follows:

1. F (0),

2. ∀x∀y(F (x) ∧ y < x ⊃ F (y)),
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3. ∀x(F (x) ⊃ x < c),

4. ∀x1...∀xn(F (x1)∧ ...∧F (xn) ⊃ F (g(x1, ..., xn))), for each symbol g stand-
ing for a primitive recursive function.

Furthermore, we accomplish slight modifications to the predicate calculus
of intuitionistic first-order logic to facilitate the treatment of feasibility in our
theory. Basically, we state that all of our newly introduced terms should be
feasible. Then we consider the following version of induction

A(0) ∧ ∀fx(A(x) ⊃ A(Sx)) ⊃ ∀fxA(x) (Indf ),

where A(x) does not contain F and the notation ∀fxA(x) stands for ∀x(F (x) ⊃
A(x)). If ⊢ denotes provability in our newly obtained theorem, then we can
state the following results:

Theorem 1 Let ⊢ F (t) for a closed term t. Then there exists an n such that
⊢ t = n.

The proof of the theorem follows a realisability technique due to Kleene [6].
As a consequence of the Theorem, we obtain the disjunction and existential

properties.

Corollary 2 Let A be a closed formula such that ⊢ A. Then the following
assertions are valid.

1. If A = (B ∨ C) then either ⊢ B or ⊢ C.

2. If A = ∃xC(x) then ⊢ C(k) for some number k.

In the talk, we are going to give a brief exposure of the results and the
background notions together with some possible further implications and future
directions.
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Puzzles in parameterized realizability
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The author and James Hanson formulated a variant of realizability, called
parameterized realizability, which they used to construct a topos in which the
object of Dedekind reals is countable. Many facts are known about the topos,
but many more remain unanswered. In this talk we shall review the current sta-
tus of our knowledge. Parameterized realizability seems to be resilient against
the usual battery of computability-theoretic arguments involving the Recur-
sion theorem and diagonalization. Even such basic questions as validity of the
Lesser principle of omniscience (every infinite binary sequence contains a 1 or
is constantly 0) is unknown, as well as that of the statement “all functions are
continuous”. One gets the feeling that sufficiently ingenious modifications of
known techniques ought to work, but the author has only been able to find ones
that tricked him into holding false beliefs.
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Since the early days of Artificial Intelligence (AI) logical and probabilistic
methods have been independently used in order to solve tasks that require some
sorts of “intelligence”. Probability theory deals with the challenges posed by
uncertainty, while logic is more often used for reasoning with perfect knowledge.
Considerable efforts have been devoted to combining logical and probabilistic
methods in a single framework, which influenced the development of several
formalisms and programming tools. Among others, the most prominent ones
include Independent Choice Logic (ICL) [13], Markov Logic Networks (MLN)
[14], Bayesian Logic Programs [9], P-log [2], ProbLog [7], and Probabilistic Soft
Logic (PSL) [1]. These languages and formalisms have been successfully applied
to many domains.

All probabilistic logic formalisms studied so far are either propositional, or
permit only individual variables, i.e., variables that can be instantiated by a
single term. On the other hand, theories and systems that use not only indi-
vidual variables but also sequence variables (these variables can be replaced by
arbitrary finite, possibly empty, sequences of terms) have emerged. Recently,
the usefulness of sequence variables and unranked symbols (function and/or
predicate symbols without fixed arity) has been shown in several formalisms
and illustrated in practical applications related to XML [5], knowledge repre-
sentation [8, 6], automated reasoning [12], and rule-based programming [11],
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just to name a few. There are systems for programming with sequence vari-
ables. Probably the most prominent one is Mathematica [15], with a powerful
rule-based programming language that uses (essentially first order, equational)
unranked matching with sequence variables [4]. The unranked term is a first-
order term, where the same function symbol can occur in different places with
different number of arguments. Unranked function symbols and sequence vari-
ables bring a great deal of expressiveness in this language, permitting writing a
short, concise, readable code.

We make one step forward in hybridizing logical and probabilistic methods,
and present probabilized first-order sequent calculus with sequence variables and
unranked function symbols. In such formalism, sequence variables, unranked
terms and probabilistic primitives are available together. We probabilize the
Gentzen-style inference system G, given in [10], in a similar way, as Marija
Boričić probabilized classical propositional sequent calculus in [3]. We show
that the new system keeps properties like soundness and completeness.

The inference system G is an extension of the standard first-order LK cal-
culus with the additional ∀ and ∃ quantifier rules over sequence variables. The
language defines unranked forumale using flexible arity predicate symbols where
quantification is allowed over both – individual (usual first-order) and sequence
variables.

In our presentation we formally define the notions of unranked term, un-
ranked formula, sequent and the probabilized sequent, which is an expression
Γ ⊢b

a ∆, for an interval [a, b] ⊆ [0, 1], with the intended meaning that the proba-
bility of derivability of Γ ⊢ ∆ (or of validity of the unranked formula

∧
Γ → ∨

∆)
is in the interval [a, b]. If there is a case when a > b or a, b ̸∈ [0, 1], then we write
Γ ⊢∅ ∆ and treat it as a contradiction. Next, we define the inference rules, give
an example derivation and discuss the properties of the calculus.
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In the era of big data, enormous amounts of data are collected and analysed
to gain important information and make decisions in a variety of application
areas. Graphs are recognised as an excellent tool for visualising the information
structure of many data systems.

When analysing the structure and behaviour of complex networks, centrality
measures help to determine and evaluate the role and importance of individual
nodes in the graph and provide information about various network properties
such as connectivity, survivability and robustness. There is no unanimity on the
criteria for defining the concept of centrality. Different centralities emphasise
different aspects of the importance of nodes in directed and undirected graphs.

As part of our research in NLP, we found that the available standard central-
ity measures were not suitable for detecting a high degree of node integration in
the graph representations of certain syntactic-semantic lexical structures. This
motivated the definition of Semi-Local Integration Measure of Node Impor-
tance (SLI) [1], a centrality measure that evaluated the level of node integration
in undirected and weighted complex networks. The tailor-made SLI measure
proved to be very valuable for NLP analysis [2], but also showed high potential
for other applications, particularly for identifying well-integrated nodes within
friend-of-a-friend types of networks, where SLI centrality provides a more nu-
anced differentiation of the importance of nodes compared to standard centrality
measures.

Recently, we focused on applications modeled by directed and weighted net-
works, taking into account the directionality of links, which adds a more elabo-
rate perspective on the importance of nodes within the network. This led us to
propose the directed version of our SLI centrality, the Semi-Local Integration
Measure for Directed Graphs (DSLI) [3]. This novel centrality measure eval-
uates the integration of nodes within the local cluster based on link presence,
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direction, its strength, organisation and optimisation of inbound and outbound
interconnectivity, and redundancy within the local subnetwork.

There is a variety of applications that rely on directed graph models to
address specific issues, from managing transportation networks, organizing dis-
tribution and delivery, and studying biological networks, to organizing the In-
ternet. Since centrality measures are involved in the detection of key nodes in
complex networks, they are a valuable tool within the robust complex network
framework. For example, by identifying critical nodes and understanding the
flow of information in the task of improving cybersecurity, security experts can
detect, analyse, and mitigate various structural threats within the network. This
approach not only strengthens immediate security measures but also contributes
to long-term resilience to evolving threats.
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Semi-Local Integration Measure for Directed Graphs, Mathematics, 12,
1087, 2024.

17



Computable metric bases

Konrad Burnik * Zvonko Iljazović � Lucija Validžić �

If (X, d) is a metric space and x0, . . . , xn is a finite sequence in X such
that for all a, b ∈ X the equalities d(a, x0) = d(b, x0), . . . , d(a, xn) = d(b, xn)
imply a = b, then we say that x0, . . . , xn is a metric basis for (X, d). We
investigate computable metric spaces (X, d, α) and metric bases x0, . . . , xn for
(X, d) such that x0, . . . , xn are computable points in (X, d, α). In particular, we
are interested in the case when (X, d) has a one-point metric basis x0 and we
investigate conditions under which such an x0 has to be computable. In view
of this, it turns out that effective compactness of the ambient space plays an
important role.

We have the following two results.

Theorem 1 Let (X, d, α) be an effectively compact computable metric space
such that (X, d) has finitely many connected components. If x0 is metric basis
for (X, d), then x0 is a computable point in (X, d, α).

Theorem 2 Let (X, d, α) be a computable metric space which has the effective
covering property and compact closed balls. Suppose (X, d) is homeomorphic to
[0,+∞⟩. If x0 is a metric basis for (X, d), then x0 is a computable point in
(X, d, α).
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We study generalized topological graphs, which are obtained by gluing rays
and arcs together at their endpoints. We prove that every semicomputable
generalized graph in a computable metric space can be approximated, with
arbitrary precision, by a computable subgraph with computable endpoints.
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Quine’s theory of New Foundations, enriched by Jensen’s Urelements, pro-
mises to be a fertile ground for developing new methods of doing mathematics
collaboratively by humans and computers, since it combines human-like intu-
ition of set theory with computer-like rigidity of type theory. The main tool
for achieving this is defining new concepts as sets, using abstraction terms over
stratified formulas. However, the need to iterate this construction necessitates
characterizing the stratification of formulas extended with abstraction terms.

There are three common approaches to this: the new terms can be eliminated
(reverting to basic formulas), typed (treating them as new variables with special
stratification conditions), or named (extending the signature with new constant
and function symbols). Two years ago, an idea emerged to harmonize these three
approaches, demonstrating that they lead to equivalent notions of stratification
in the extended language. Today, we have completed the first step by developing
a certified algorithm for stratification (based on [1]) and proved that (with an
interesting exception involving constant terms) eliminating abstraction terms
results in the same stratified formulas as typing them.
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Today, we assist to a growing complexity of software that increases the dif-
ficulty to develop reliable applications. On the other hand, faulty software can
dangerously lead to destructive results. Software written for controlling robots
is an example of critical applications that need to be certified that nothing bad
can happen. Even for simple operations that can be encountered every-day, the
certification process may be non-trivial. Data sorting is such an operation, with
practical applications for spreadsheet users, the storage and analysis of data
related to the environment and climat change, etc.

In this talk, we give an overview of some computer-based experiments of
formal certification of various sorting algorithms by using mechanized reasoning
tools such as the Theorema [1, 2, 8] and Coq [7] proof systems. The sorting
algorithms that we consider process a multiset of naturals such that its elements
become increasingly ordered. They are: Quick–Sort, Patience–Sort, Min–Sort,
Max–Sort, Min–Max–Sort, and Bubble-Sort. They have been synthesized in
recent work [3, 4] using the Theorema prover, then certified with Theorema and
Coq in [5, 6].

We explain how to construct the appropriate underlying theory, define the
sorting algorithms in a functional style, run on examples and discuss the proofs
of their correctness and of the required lemmas. Since the certification was
performed in parallel, both in Theorema and Coq, we also take advantage to
compare their characteristics and performances.

In Theorema, the underlying theory uses multisets in order to express the
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fact that the input and the output have the same elements. The proofs are
built almost completely automatically, and presented in a (natural) style close
to the proofs produced by humans. The proofs are non-trivial and require
explicit induction reasoning that uses generalized induction schemes based on
a well-founded ordering on lists defined by the strict inclusion of multisets. On
the other hand, the background theory, the algorithms, and the proof rules are
composed by the user without any restrictions – thus the proofs are error prone.

In Coq, the specification of sorting algorithms uses a multiset representation
based on lists and a permutation relation. The proofs are highly interactive,
based on scripts built by humans, which require more additional lemmas and
proof effort. On the other hand, the algorithm definitions and the proofs are
absolutely rigurous as Coq cannot accept elements that are not theoretically
correct.

Our experiments contribute to a better understanding and estimation of the
complexity of such certification tasks, and to create a basis for further increase
of the level of automation in the two systems and for their possible integration.
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Pattern calculus [2] extends the λ-calculus [1] with pattern matching capa-
bilities. Instead of abstracting from a variable, they permit abstractions from
a pattern: a λ-term which specifies the form of the argument. The more flexi-
ble the patterns are, the more powerful the calculus is. Patterns are the most
expressive ones: They can be instantiated, generated, and reduced. Pattern
calculus is expressive, but there is also a price to pay for that: Confluence is
lost and various restrictions have to be imposed to recover it.

Fuzzy similarity relations are reflexive, symmetric, and transitive fuzzy re-
lations. Similarity-based matching and unification has been quite intensively
investigated, as a core computational method for approximate reasoning and
declarative programming. In this talk we propose extension of pattern calculus
with fuzzy similarity relations.

Reduction in pure pattern calculus is parameterized by crisp pattern match-
ing. We replace it by similarity based pattern matching to obtain the calculus
that supports approximate reduction. That means, for a term (λV P.M)N , if
P matches to N with substitution σ and degree d, then (λV P.M)N reduces to
Mσ with degree d. Certainly, such a reduction is not generally confluent. We
discuss restrictions that guarantee confluence of the fuzzy pattern calculus.
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The proofs-as-programs correspondence, also known as, the Curry-Howard
correspondence and the formulae-as-type is a foundational concept that connects
logic and computation. This correspondence establishes a deep connection be-
tween logical reasoning and computational processes. The origins of this idea
can be traced back to the relationship between intuitionistic logic, lambda cal-
culus and combinatory. Nowadays it is at the heart of formal verification of
mathematical proofs. Extensions to various logical and computational frame-
works highlights its versatility and broad applicability across different domains
of mathematics and computer science.

In this talk, we give an overview of this correspondence in different frame-
works of computation and communication in distributed systems. The focus
is on recent results which lead to safe orchestrations of federated (machine)
learning algorithms.
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We study an effective analogue of the ultraproduct construction for com-
putable structures. A structure A is computable (constructive) if its domain is
a computable set and its relations and functions are uniformly computable or,
equivalently, the atomic diagram ofA is computable. We consider computability-
theoretic product construction for an infinite uniformly computable sequence of
structures, where the role of an ultrafilter is played by a cohesive set. A co-
hesive set is an infinite set of natural numbers that cannot be split into two
infinite subsets by any computably enumerable set. There are continuum many
cohesive sets, and some are the complements of computably enumerable sets,
which are known as maximal sets. For the effective product we consider only
partial computable functions. Hence, the elements of the product are the equiv-
alence classes of certain partial computable functions, which in the case of a
co-maximal set can be replaced by (total) computable functions.

In particular, we study effective powers of a single computable structure.
Unlike many classical ultrapowers, effective powers are countable structures and
can be isomorphic to the original structure. We investigate the isomorphism
types of cohesive powers and their properties when they are not isomorphic to
the original structure. It is possible for isomorphic computable structures to
have non-elementarily equivalent effective powers over a fixed cohesive set.

In general, effective powers preserve the first-order properties expressed only
by sentences of lower levels of quantifier complexity. Additional decidability in
the computable structure plays a significant role in increasing satisfiability of
sentences in its effective power. For example, a structure A is called decidable
(strongly constructive) if its elementary diagram is computable. For a decidable
structure, the effective power is elementarily equivalent to the structure.
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We will present some of our recent collaborative results on effective powers
for various structures [3, 4]. Although effective powers arose naturally in the
relatively recent study of the automorphisms of the lattice of computably enu-
merable vector spaces initiated by R. Dimitrov (see [2]), the original inspiration
for effective powers dates back to Skolem’s 1934 construction of a countable
non-standard model of arithmetic (see [1]).

Acknowledgment

This work has been supported by FRG NSF grant DMS-215209.

References

[1] R.D. Dimitrov and V. Harizanov, Countable nonstandard models: follow-
ing Skolem’s approach, in: Handbook of the History and Philosophy of
Mathematical Practice, B. Sriraman, ed., Springer, 2024, pp. 1989–2009.

[2] R.D. Dimitrov and V. Harizanov, Orbits of maximal vector spaces, Algebra
and Logic 54 (2016), pp. 440–477 (English translation).

[3] R. Dimitrov, V. Harizanov, A. Morozov, P. Shafer, A.A. Soskova and S.V.
Vatev, On cohesive powers of linear orders, Journal of Symbolic Logic 88
(2023), pp. 947–1004.

[4] V. Harizanov and K. Srinivasan, Cohesive powers of structures, to appear
in Archive for Mathematical Logic

30



Interpolation Properties of Proofs with

Cuts

Anela Lolić 1
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Ever since Craig’s seminal result on interpolation [2], interpolation has been
recognized as important property of logical systems. In essence, Craig interpo-
lation states that a logic L has the interpolation property if whenever A → B
holds in L, the information from A that is relevant to derive B is a formula I
in the common language of A and B, i.e. both A→ I and I → B hold in L. It
demonstrates that only contradictory formulas A and valid formulas B admit
the validity of A→ B if A and B do not have anything in common.

As it is often the case in proof theory, also Craig interpolation can be seen
as an instance of a more general principle, in this case Maehara’s lemma [4],
which establishes an interpolant on any partition of the end-sequent of a cut-free
proof. It is one of the most significant properties of cut-free LK-derivations that
they allow a direct construction of interpolants by Maehara’s lemma, thereby
limiting the interpolant’s complexity in terms of proof complexity.

Maehara’s Lemma.

Let Γ ⊢ ∆ be LK-provable, and (Γ1,Γ2) and (∆1,∆2) arbitrary partitions of Γ
and ∆, denoted as [{Γ1; ∆1}, {Γ2; ∆2}]. Then there exists a formula I, called
the interpolant of the partition, s.t.

1. Γ1 ⊢ ∆1, I and I,Γ2 ⊢ ∆2 are both LK-provable.

2. I contains only free variables and individual and predicate constants apart
from ⊤ that occur in Γ1 ∪∆1 and Γ2 ∪∆2.

In classical logic, cut-free proofs can always be obtained from proofs with cuts by
Gentzen’s cut-elimination theorem [3], hence interpolants based on Maehara’s
lemma can always be constructed. But what happens if cuts are not eliminated
prior to applying Maehara’s lemma? In this work we focus on this question
and identify cut-formulas that admit the extraction of interpolants from proofs
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based on a variant of Maehara’s lemma. Consider for instance proofs that
contain atomic cut-formulas only [1]:

Lemma.

Let φ be an LK-proof of the form

(φ1)

Γ ⊢ ∆, F

(φ2)

F,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

where F is an atomic formula, φ1 and φ2 cut-free. Let X = [{Γ1,Π1; ∆1,Λ1},
{Γ2,Π2; ∆2,Λ2}] be a partition of the end-sequent S : Γ,Π ⊢ ∆,Λ. Then there
exists an interpolant I of S w.r.t. X s.t. either I = I1∧I2 or I = I1∨I2, where
I1 is an interpolant of Γ ⊢ ∆, F and I2 is an interpolant of F,Π ⊢ Λ.

Proof.

1. F occurs only as a predicate symbol in Γ2,Π2,∆2,Λ2. Define the par-
titions X1 = [{Γ1; ∆1}, {Γ2; ∆2, F}] of Γ ⊢ ∆, F, and X2 = [{Π1; Λ1},
{F,Π2; Λ2}] of F,Π ⊢ Λ. By Craig’s interpolation theorem there are in-
terpolation derivations ψ′

1 w.r.t. X1 and ψ′
2 w.r.t. X2 s.t. ψ′

1 =

(χ1,1)

Γ1 ⊢ ∆1, I
1

(χ1,2)

I1,Γ2 ⊢ ∆2, F
cut

Γ1,Γ2 ⊢ ∆1,∆2, F

s.t. the predicate symbols of I1 are in the intersection of the predicate
symbols in the sequents Γ1 ⊢ ∆1 and Γ2 ⊢ ∆2, F , and, as F occurs
in Γ2,Π2,∆2,Λ2 we have that the predicate symbols of I1 are in the
intersection of the predicate symbols in the sequents Γ1 ⊢ ∆1 and Γ2 ⊢ ∆2.
ψ′
2 =

(χ2,1)

Π1 ⊢ Λ1, I
2

(χ2,2)

I2, F,Π2 ⊢ Λ2
cut

Π1,Π2, F ⊢ Λ1,Λ2

s.t. the predicate symbols of I2 are in the intersection of the predicate
symbols in the sequents Π1 ⊢ Λ1 and F,Π2 ⊢ Λ2, and, as F occurs in
Γ2,Π2,∆2,Λ2 we have that the predicate symbols of I2 are in the inter-
section of the predicate symbols in the sequents Π1 ⊢ Λ1 and Π2 ⊢ Λ2.
Now we define an interpolation derivation ψ for S w.r.t. X:

(χ1,1)

Γ1 ⊢ ∆1, I
1

(χ2,1)

Π1 ⊢ Λ1, I
2

∧r
Γ1,Π1 ⊢ ∆1,Λ1, I

1 ∧ I2

(χ1,2)

I1,Γ2 ⊢ ∆2, F

(χ2,2)

I2, F,Π2 ⊢ Λ2
cut

I1, I2,Γ2,Π2 ⊢ ∆2,Λ2 ∧l
I1 ∧ I2,Γ2,Π2 ⊢ ∆2,Λ2

cut
Γ1,Γ2,Π1,Π2 ⊢ ∆1,∆2,Λ1,Λ2
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By construction the predicate symbols in I1 ∧ I2 are a subset of the pred-
icate symbols in Γ1,Π1,⊢ ∆1,Λ1 and Γ2,Π2 ⊢ ∆2,Λ2.

2. F occurs only as a predicate symbol in Γ1,Π1,∆1,Λ1. Similar to the
construction above, except that the interpolant is I1 ∨ I2.

3. F does not occur in Γ,Π,∆,Λ. Then both cases above work, as neither
I1 nor I2 contains F , thus I1 ∧ I2 and I1 ∨ I2 do not contain F .

In the construction above we only considered interpolants s.t. their predicate
symbols are in the common language of the formulas in the end-sequent. It can
however be shown that from this form of interpolants full interpolants (contain-
ing only free variables and individual and predicate constants in the common
language) can be obtained.

It is easy to show that a similar result as in the lemma above can be obtained
for cut-formulas containing only one predicate symbol, and we conjecture that
these results can be obtained even for more complex cut-formulas. It is an open
question where the limits of these methods are.
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Bijenička cesta 30, Zagreb, Croatia
2
Department of Electronics, Ruder Bošković Institute, Zagreb
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Storytelling [1] is an extension of a task of redescrption mining [2] with a goal
of relating disjoint subsets of entities contained in the data. Each subset of
entities can be associated with one query that describes it. Thus, we have qstart
describing the first subset and qend describing the second subset, supp(qstart)∩
supp(qend) = ∅. The story is constructed by finding a sequence of redescriptions,
of a predefined accuracy, that form a path from the starting query describing
the first subset of entities to the final query describing the second subset of
entities. Neighboring redescriptions in a sequence share one query and must
have the Jaccard index larger than some predefined threshold ε. For example
qstart → q2 → q3 → qend is a sequence of queries that corresponds to a story
R1 = (qstart, q2), R2 = (q2, q3), R3 = (q3, qend), J(Ri) ≥ ε, ∀i and supp(qstart)∩
supp(qend) = ∅.

Storytelling has applications in biology, where one might need to relate sets
of genes expressed in one experiment to another set implicated in a different
pathway, understand the evolution or properties of disjoint sets of bacteria or
species etc.

We will present the original formulation of the storytelling problem, inclu-
ding the sole algorithm for storytelling. Next, we will propose the natural
extension of a problem to multiple views. Here, the data contains at least two
disjoint sets of attributes describing the same set of entities. These can, for
example, describe different properties of entities (genetic tests, phenotypic pro-
perties, medical measurements etc.). Attributes are grouped into views (Wi),
each containing a set of related measurements. Here, all redescriptions are
of a form Ri = (q1, q2, . . . , q|W|), where attributes forming q1 come from the
first view W1, the attributes forming q2 from the second view W2 etc. Stories
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are again defined as sequences of redescriptions. One example of such a sequ-
ence can be R1 = (q1,start, q2,1, . . . , q|W|,1), R2 = (q1,3, q2,1, . . . , q|W|,2), R3 =
(q1,3, q2,2, . . . , q|W|,3), . . . , Rn = (q1,end, q2,s, . . . , q|W|,p), where J(Ri) ≥ ε, ∀i,
supp(q1,start) ∩ supp(q1,end) = ∅. Each neighboring pair of redescriptions sha-
res a query from at least one view. Note that qstart and qend can generally be
constructed using attributes from different views. For example, one can search
for stories between subsets described by q1,start and q2,end etc. Finally, we will
show that a restricted 2-view variant, where redescription queries can only con-
tain disjunction logical operator is NP − hard and the corresponding decision
formulation is NP − complete.
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Learning machines build self-confirming

beliefs

Duško Pavlović

Machine-learned language models have transformed everyday life: they steer
us when we study, drive, manage money. They have the potential to transform
our civilization. But they hallucinate. Their realities are virtual. It turns
out that, after they become capable of recognizing hallucinations and dreaming
safely, as humans tend to be, the language-learning machines proceed to generate
broader systems of false beliefs and self-confirming theories, as humans tend to
do. The talk is based on the general logical construction from [2] in the learning
framework of [1, Ch. 4].

Unfortunately, the author had to cancel attendance, due to an unexpected
duty.
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A framework for logic-based ethical planning with intended application to
robotics was introduced by [2] in 2022. There, several planning tasks have shown
to be intractable (PSPACE-complete). Using additional assumptions at the cost
of generality, we define a constrained version of the CONFLICT problem that
is polynomially solvable and present the algorithm to solve it.

Here, we briefly describe the relevant part of the framework [2] and our
proposed contribution.

The world is described by atomic propositions Prop = {p1, . . . , pn} and
their truth values (states) s ∈ 2Prop. Each action a ∈ Act can change values
of some propositions according to the preconditions γ+, γ− : Act × Prop →
LPL, where LPL is the set of well-formed propositional logic formulas over
Prop. After action a, proposition p becomes true if γ+(a, p) is true, and false
if γ−(a, p) is true. If neither or both of them are true, the truth value of p
will not change after action a. The described rules (action theory) allow us to
calculate a history H(π, s0, γ) as the sequence of states generated by an action
plan π = (a1, . . . , ak) from an initial state s0 under action theory γ. A set of
moral values Ω consists of linear temporal logic (LTL) formulas [3] that describe
temporal properties of atomic propositions (evaluated under some history H)
using operators such as negation (¬ϕ), conjuction (ϕ1∧ϕ2), ”next” (Xϕ), ”until”
(ϕ1Uϕ2), ”henceforth” (Gϕ), and ”eventually” (Fϕ). For a given moral problem
M = (Ω, γ, s0), the CONFLICT problem asks if there is an action plan π such
that the history H(π, s0, γ) satisfies all values from Ω. In [2], CONFLICT is
shown to be PSPACE-complete using reduction from the propositional STRIPS
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planning problem called PLANSAT [1].
Our contribution lies in restricting CONFLICT to a polynomially solvable

variant using additional assumptions that reduce its generality without sacrifi-
cing too much of its practical use. Motivated from various real-world examples,
we assume that most propositions (all except for a constant number of them)
are localized in the following sense: there is an ordering Loc = (p1, . . . , pn)
of the localized propositions such that each action a depends on, and chan-
ges, only the propositions pi from an interval i ∈ [l(a), r(a)] of constant length
(r(a)− l(a)+1 ≤ L). In addition, there is a constant number of global propositi-
ons Glob = {q1, . . . , qM} for which there are no such constraints: any action can
use or change their truth values. We additionally assume that the local ordering
of propositions constrains the temporal order of actions: there is a constant K
such that if r(a) + K < r(b), then action a cannot be performed after action
b. Finally, the value set Ω contains only the formulas of the form p, Fp, Gp,
or FGp, where p is an atomic proposition or its negation. In other words, each
goal dictates that some p must be currently/eventually/always/finally satisfied.

Under these assumptions, CONFLICT can be solved in polynomial time.
Roughly, the algorithm is based on a breath-first search on a graph where each
vertex corresponds to a substate, i.e., a truth assignment for an interval of L+K
consecutive propositions from Loc and all propositions from Glob. An edge can
”move right”, i.e., increase the substate position by 1 if the values from Ω con-
cerning the proposition that gets removed from the substate are satisfied. Other
edges correspond to actions that change the values of the substate propositions.
The computational complexity is polynomial in the size of Prop, Act, and Ω,
but contains the constant factor 4K+L+M .
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Aspects of Non-Associative Linear Logic

Andre Scedrov
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Adding subexponentials to linear logic enhances its power as a logical frame-
work, which has been extensively used in the specification of proof systems and
programming languages. Originally, subexponentials were introduced in clas-
sical, linear, affine or relevant settings. Later, this framework was enhanced
so to allow for commutativity as well. In [1], we closed the cycle by consid-
ering associativity. We formulated the resulting intuitionistic, two-sided sys-
tem and showed that it admits the (multi)cut. In the talk we emphasize two
new undecidability results that strengthen the undecidability results for frag-
ments/variations of the system, given in [1]. If time permits we also discuss a
classical, one-sided multi-succedent classical analogue of our intuitionistic sys-
tem, presented in [2], following the exponential-free calculi of Buszkowski, and
of de Groote and Lamarche. As in linear logic, a large fragment of our intu-
itionistic calculus is shown to embed conservatively into the classical version. It
should be noted that such conservativity results are quite unusual, as they do
not hold for traditional, richer logics which enjoy more structural rules for arbi-
trary formulae. This is joint work with Eben Blaisdell, Max Kanovich, Stepan
L. Kuznetsov, and Elaine Pimentel.
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Interpretability logic IL extends provability logic GL with a new binary
operator ▷. One of the most notable semantics for IL is Veltman semantics
(see [3]), which extends Kripke frames with a family of relations {Sw : w ∈W}
satisfying some properties.

It is known that the logic IL is complete, but not strongly complete with
respect to Veltman semantics. Similarly as the analogous problem for GL, this
problem is due to Löb’s axiom, 2(2φ→ φ) → 2φ, and the fact that it defines
a class of transitive and inversely well-founded frames.

In this talk, we will define a new class of frames, in which we replace the prob-
lematic property with irreflexivity, thus defining a new class of quasi-Veltman
frames. Using this new class of frames we define the class of general frames,
similarly as with classical modal logics (see e.g. [1]) and we prove that the logic
IL is strongly complete with respect to the class of general frames.
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Is there mathematical concepts that are

real?

Zvonimir Šikić

According to [3], C. F. Gauss said: If eiπ = −1 was not immediately apparent
to a student upon being told it, that student would never become a first-class
mathematician. We will explore the arguments that support Gauss’s claim in
order to prove that there are no mathematical concepts that are real in Steiner’s
sense.

We conform to the position that concept exists if it satisfies the W. O.
Quine’s condition: Fs exist if ∃xFx is a theorem of a true theory; cf. [8].
But M. Steiner claims in [10] that it is possible for Fs to satisfy this condition
without being real. His inspiration is P. Bridgman’s definition of physical re-
ality: Something is physically real if it is connected with physical phenomena
independent of those phenomena which entered its definition; cf. [1] p.56.

There is something profoundly right in the idea that the real is that which
has properties transcending those which enter its definition and Steiner’s aim is
to show that mathematical entities can occasionally be said to be real in exactly
the same sense.

Quine’s condition is applicable to the existence of mathematical entities:
scientific theories are committed to the existence of mathematical entities, and
since we regard some of them as true, we must regard mathematical entities as
existent. However, according to Steiner, this is not an argument for the reality
of mathematical entities.

To demonstrate the reality of an entity in the natural sciences one typically
shows that the entity is indispensable in explaining some new phenomenon. In
this way the entity acquires new and independent descriptions. Steiner applies
the same idea in mathematics.

For example, π is real because we have at least two independent descriptions

for π. Geometric, π = C
2r and analytic, π = ln(−1)

i . In the first case π is derived
from the formula for the circumference of a circle C with radius r. In the second
case π is derived from the special case of Euler’s formula, epii = −1.

We know by deductive proof that the descriptions are coreferential (unlike
the situation in the physical sciences where this is demonstrated empirically).
But then, how can provably coreferential descriptions be regarded as indepen-
dent? Steiner’s answer is to distinguish between two kinds of proof of coreference
in mathematics: those which are nonexplanatory and merely demonstrate the
coreference, and those which explain it. Descriptions are independent if the

41



proofs of their coreferentiality are nonexplanatory.
We show that the “independence of the descriptions of two mathematical

entities” is not additionally explained by the “absence of explanatory proofs of
their coreference”, so we will stick with “independence” as a less vague criterion.

After a detailed analysis of the “reality status” of π, in the previously de-
scribed context, we conclude that π is not real in Steiner’s sense. As a matter
of fact, it is difficult to prove for any mathematical concept that it is real in
Steiner’s sense. Namely, it is not enough to formulate two descriptions of a
concept and find a proof of their coreference which keeps the descriptions inde-
pendent. It should be proved that all proofs of their coreference are such.

But mathematical theories are deeply connected and in the entire history of
mathematics, mathematicians are constantly striving to discover these connec-
tions. For example, it is typical for mathematicians to persistently search for
new proofs of old theorems in order to discover these intertheoretical dependen-
cies.

Hence, our hypothesis is that no mathematical concept is real in Steiner’s
sense.
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Threat models and moving target

defense for the CoAP messaging

protocol

Carolyn Talcott

Networked applications based on Internet of Things provide many services–
some convenience, some safety critical (smart buildings, manufacturing, elec-
trical grid, medical devices, . . .). Network elements are often resource limited
(memory, energy, bandwidth). The CoAP messaging protocol is an http-like
protocol designed for use by resource limited devices. To study the vulnera-
bilities of CoAP and possible mitigations we formalized the CoAP specification
RFC7252 in the Maude rewriting logic system. Protocol dialects are light weight
moving target defense wrappers that provide additional security guarantees for
communication. In this talk we will introduce CoAP, present a dialecting trans-
form for CoAP message, and analyze its properties under different threat mod-
els. We will also summarize case studies demonstrating CoAP vulnerabilities
and strange effects an attacker can achieve.
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Since at least the 1980s there has been growing interest in the hypothesis
that conepts of computability are (or should be) dependent on physics. In
the first part of this talk I review some of the fascinating arguments that
appear to be at odds with one another more often than one would like.

The guiding idea is that theoretical computational devices like Turing
machines ought to be viewed as realized (or realizable) in a particular phys-
ical setting. E.g., Turing machines seem to conceptually “live” in the world
of classical mechanics. What is meant by “physical setting”, however, is
in fact a mathematical model of the physical world. Hence it seems more
accurate to say that in works on a “physical Church-Turing Thesis”, com-
putability is considered in the framework of a theory within mathematical
physics: classical mechanics, general relativity, or quantum theory, as the
case may be.

Although literature on quantum computing features periodic announce-
ments of purported violations of the Church-Turing Thesis, perhaps the most
radical expression of the thesis that computability is dependent on physics
comes from general relativity. In the somewhat exotic Malament-Hogarth
spacetimes a Turing machine can travel along a trajectory that has infinite
proper time and, it is argued, can send a signal to an observer in whose
frame the machine’s trajectory has finite time. The observer would thus
have at their disposal an infinite-time Turing machine. Therefore, Hogarth
argues [3], “the Church-Turing Thesis is like the outmoded claim: ‘Euclidean
geometry is the true geometry.’ ”

The arguments mentioned above proceed in the broader mathematical
context of classical analysis, as does most of mathematical physics. In par-
ticular, the spacetime continuum is a manifold consisting of points with
coordinates in R. In the second part of the talk I would like to add to
the overall confusion by showing how the Brouwer-Weyl continuum, or an
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analogous concept in several dimensions, itself relates to a spacetime famil-
iar from mathematical physics — deSitter spacetime — as well as to order
structures introduced in Dana Scott’s work on the theory of computation.

According to Brouwer (and, for a time, Weyl), the continuum should be
regarded as the collection of ‘sequences of nested intervals whose measure
converges to zero.’ [5]. A higher-dimensional analog would be nested se-
quences of spheres with radii converging to zero. Classical geometry, going
back to Laguerre and Lie, encodes the space of oriented spheres in Rn as
points in Rn+1: (x, r) with x ∈ Rn being the centre and r ∈ R the oriented
radius [1]. In this cyclographic representation the space of spheres has the
structure of Minkowski space R1,n with the usual pseudometric.

In this representation, for r1, r2 > 0, ||x1 − x2|| ≤ r1 − r2 iff the sphere
(x2, r2) is contained in the sphere (x1, r1) [2]. In the terminology of special
relativity, sphere inclusion corresponds to events that are related in the
causal order. The concept of a nested sequence of spheres thus corresponds
to a time-oriented causal sequence of events in Minkowski space.

Restricting to positive radii does not correspond to the full Minkowski
space. To deal with this, we consider a different representation, in terms of
Lie cycles. For a sphere (x, r), with r > 0, consider the vector (y0, . . . , yn+1) ∈
R1,n+2 given by

y0 = −1

2

( ||x||2 + 1

r
− r

)

(y1, . . . , yn) = −1

r
x

yn+1 = −1

2

( ||x||2 − 1

r
− r

)

Then −y20 +
∑n+1

k=1 y
2
k = 1, and inducing the metric on this hyperboloid from

R1,n+2 one gets the deSitter metric on the space of spheres

ds2 =
1

r2
(−dr2 + dx2).

Substitution r = e∓t yields the deSitter metric ds2 = −dt2 + e±2tdx2 in flat
slicing coordinates of the “expanding” (resp. “contracting”) part.

Thus, surprisingly, a detour through classical geometries relates the
“higher-dimensional continuum” to a well known object in general relativity.
Nested sequences of spheres correspond to “time”-oriented causal sequences.
Such sequences, without additional qualifications, could be finite; this is not
what Brouwer and Weyl had in mind. A more precise analog would be inex-
tendible “time”-oriented causal sequences (by analogy of inextendible causal
curves): there is no sphere that is contained in all spheres in the nested
sequence.

These meditations suffer from a fatal flaw: they invoke the classical anal-
ysis that underpins the definition of deSitter space or Lorenzian manifolds
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in general. Although theorems in general relativity show that the mani-
fold topology (under some assumptions) can be recovered from the space
of timelike curves, this requires a notion of smoothness. It may be possi-
ble to formulate these ideas in a way that does not presuppose a concept
of smoothness. Notably, Martin and Panangaden [4] introduce the cate-
gory of globally hyperbolic posets, which includes causal orders on globally
hyperbolic spacetimes such as deSitter. This category is equivalent to the
category of interval domains, introduced by Scott in his pioneering work on
the theory of computation and semantics of programming languages.

The upshot of the argument in [4] is that manifold topology (if not geom-
etry) of a globally hyperbolic spacetime can be recovered from a countable
dense subset of the associated interval domain of the causal order. The
spacetime itself (if we start from one) is homeomorphic to the set of max-
imal elements in the interval domain, with Scott topology. If no manifold
is given from the start, but only a countable dense poset — e.g., spheres
with rational centres and rational radii — one can take an ideal completion
of the basis of intervals in the poset. The set of maximal elements of the
completion, with Scott topology, is the “manifold”, topologically; but there
is no metric. (This is the fundamental problem of the causal set program.)

Despite interesting and surprising (at least to me) connections with dif-
ferent fields of mathematics, it is not clear whether such an operation, even
if successful, would lead to a satisfactory model of the intuitionist continuum
in higher dimensions. Automorphisms of the causal order of the Minkowski
space R1,n for n > 1 are precisely the Lorenz transformations, by a famous
theorem of Alexandrov and Zeeman. In this sense, the structure of the con-
tinuum as a set of nested sequences of intervals (which would correspond
to n = 1) seems to be fundamentally different from a higher-dimensional
analog: the Alexandrov-Zeeman theorem does not hold for n = 1, as there
are nonlinear bijections R → R that preserve interval order.
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Many natural functions on proofs—in particular, the cut-elimination operations—
can be viewed as continuous functions on proofs[2]. We show how these func-
tions can be written as ill-founded proof-trees in a suitable version of the sequent
calculus.

For instance, consider the ∧-inversion operation which inverts a proof of
ϕ ∧ ψ to a proof of ϕ—that is, the function that transforms a proof of ⇒ Γ to
a proof of ⇒ (Γ \ {ϕ ∧ ψ}), ϕ. (We focus on a one-sided sequent calculus for
notational convenience.) It can be represented, in our version of the sequent
calculus, by a proof of the sequent

⇒ [ϕ ∧ ψ]⟨⟩, ϕ
where the “tagged sequent” [ϕ ∧ ψ]⟨⟩ indicates that this is a function which
expects to take as input a proof, begins reading that proof from the conclusion
(the position ⟨⟩), and that the function will modify the conclusion of its input
as expected, removing ϕ ∧ ψ and adding ϕ. (Note that the tag ·⟨⟩ serves two
purposes—it indicates that we should view the tagged sequent as being negated,
and also tells us which part of the input proof our function depends on.)

The crucial technical tool is the “Read rule”. Viewed from the bottom to
the top, we can think of this rule as describing the process “read the input proof
at some position ϵ and branch based on what rule we see there”. For a theory
T, this rule is:

⇒ Σ,Γ(R) \ Γ0, {[Γ0]
ϵι | ι is a premise of R} (R ∈ T)

ReadT⇒ Σ,Γ(ϵ) \ Γ0, [Γ0]
ϵ

where ϵ is some position in an input proof (that is, a finite path starting
at the root and leading, through the premises of rules in T, to a position in
the proof), Γ(ϵ) ⇒ Σ(ϵ) is the premise sequent of the top-most rule in ϵ, and
Γ(R) ⇒ Σ(R) is the conclusion of R.
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With careful reading, this rule says exactly what it ought to. The conclusion
tells us we have obtained a function which takes as an input a proof d for which
ϵ describes a valid path from the root, and depends only on the part of the proof
above ϵ. In order to produce such a function, we need a case telling us what to
do for each possible rule that could appear at position ϵ; in the case where we
see the rule R, we are permitted to use as inputs the proofs above ϵι for every
premise ι of R.

These functions are naturally ill-founded, but it makes sense to impose a
different sort of well-foundedness condition, namely that they map well-founded
proofs to well-founded proofs.

This is a general scheme which we can use to replace introduction rules:
instead of proving ϕ in any sort of direct way, we can use the rule

⇒ Σ, [¬ϕ]⟨⟩
⇒ Σ, ϕ

This rule says “in order to prove ϕ, it suffices to have a function which
removes ¬ϕ from a proof”.

This is particularly useful in the context of second order arithmetic. Buch-
holz gave an ordinal analysis of the theory of Π1

1-comprehension[1, 3] using the
Ω rule:

⇒ Σ,Γ (a branch for each proof of ⇒ Γ,¬ϕ(X))
Ω⇒ Σ,∃2X ϕ(X)

This rule justifies introducing ∃2X ϕ(X) with the graph of a function trans-
forming proofs of ⇒ Σ,¬ϕ(X) into proofs of ⇒ Σ.

Using the Read rule, we can instead justify ∃2X ϕ(X) using the algorithm for
this function, represented as an ill-founded sequent calculus proof. Using this
method, we are able to give an ordinal analysis for full second-order arithmetic.

Acknowledgment

The research reported in the paper is partly supported by NSF grant DMS-
2054379.

References

[1] Buchholz, W. “Eine Erweiterung der Schnitteliminationsmethode Habili-
tationsschrift, Universität München”, 1977.

[2] Mints, G.E. “Finite investigations of transfinite derivations”, Journal of
Soviet Mathematics 10.4 (Oct 1978), pp. 548–596.
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1 Introduction

The history of the search for a minimal set of inference rules for syllogistic
reasoning starts already with Aristotle. One of the metatheorems he proves in
Prior Analytics, later referred to as the Dictum de omni et nullo, states that
all syllogistic deductions (resp. moods) can ultimately be reduced to the two
universal deductions in the First Figure: Barbara and Celarent [3] (we follow the
mnemonic names as given in [3]). The purpose of our talk is to present different
possible minimal sets of inference rules necessary to prove all the twenty-four
valid Aristotelian syllogistic moods using the indirect-proof method, thus giving
a novel matatheoretical view of Syllogistic.

In the talk, we shall first present all the alternative direct proofs which are
possible for each mood and which are not present in Aristotle. This will give us
an opportunity to combine them with the other results at the end. Then, we
shall consider what is the greatest reduction one can achieve when proving the
syllogisms indirectly, that is, by showing that assuming the conclusion of a syllo-
gism to be false leads to a contradiction between the negated conclusion and one
of the syllogism’s premises [2]. The question we shall answer is whether, when
proved indirectly, syllogisms behave the same way and, consequently, whether
Aristotle was right and his reduction holds for indirect proofs as well.
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2 Our method

Aristotle uses the indirect-proof method only to prove moods which are not
provable directly, that is: Baroco and Bocardo (for example in 27a36-b1) [1].
To answer our research question, we shall in turn use the indirect-proof method
to prove each syllogistic mood in every possible way. An example syllogistic
mood used to demonstrate the indirect-proof method working will be Cesaro.
The four different sets of single-premise inference rules we shall consider are the
ones containing:

1. Subalternation and conversion,

2. Conversion-only,

3. Subalternation-only,

4. No single-premise inference rule (null-set).

The results for each set will then be shown as a 24x24 Chart containing every
possible pair of moods, with the cases in which one mood can be proved by
another being marked in color (all the Charts are presented in [4]).

Considering the Charts, we shall make some claims regarding both the dif-
ferences in the results between our different sets of single-premise inference rules
and the results of the subalternation and conversion set, as it will prove to be
the most interesting one.

3 Results

Our claims for the subalternation and conversion set will be that the syllo-
gisms can be divided into groups based on the fact that they can prove and
be proved by the same set of moods. Three main groups are the C Group,
containing Celarent, Cesare, Camestres, and Camenes; the D Group, contain-
ing Darii, Disamis, Datisi, and Dimaris; and the F Group, containing Ferio,
Festino, Ferison, and Fresison. Apart from those, we will identify minor groups
containing two or three syllogisms and show various relationships between those
groups.

Regarding the differences between sets, we will show that in the null-set and
subalternation-only scenarios, neither the First nor the Second or the Third
Syllogistic Figure is enough to prove all the moods by itself (i.e. Aristotelian
reduction does not hold). In the case of conversion and conversion with
subalternation scenarios, Aristotle’s reduction to Celarent and Barbara will be
shown to hold. However, in the conversion-only scenario, there shall be no sub-
stantial difference between taking Celarent and any other mood from the C or
F Group (described in the previous paragraph). In the conversion with subal-
ternation scenario, in turn, Barbara and Calarent can be replaced by Baroco
and any other syllogism from the F Group.
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4 Direct plus indirect

Finally, we shall combine the results obtained in previous Section with all the
possible direct-proof cases shown before and thus consider all the possible proof
cases one can have in Syllogistic. In this scenario, we will show that an even
greater amount of moods can be grouped together according to the reductions
one can make by the use of them. If we are to next reduce the Chart (i.e. leave
only one representative mood of each group), we shall obtain four different
possible reduction behaviors: the Barbara-Baroco-Bocardo Group, the C, D,
and F Groups further grouped together, the Subalternated (S) Group, and the
Celaront-Cesaro-Darapti (SII) Group, essentially dividing all the moods into
four different sets, different from the usual Syllogistic Figures:

B Group C, D, F Group S Group SII Group
B Group

C, D, F Group
S Group
SII Group

Table 1: Final reduction

In this scenario, as the last two of the identified Groups can be reduced to the
first two, the ultimately irreducible moods (i.e. the counterpart of Aristotelian
Dictum) need not to be Barbara and Celarent, but can be any pair combin-
ing one mood from the B Group and one mood from the combined C, D, F
Group. In this way, we can see that when the indirect-proof methot is applied
to its’ full extent, the metatheoretical structure of Syllogistic can be completely
reorganized and proves to be different from the one proposed by Aristotle.
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Trading venues, commonly known as financial exchanges, are a corner-
stone system of finance and represent platforms where buyers and sellers
come together to trade various financial instruments (stocks, bonds, com-
modities, currencies, derivatives, etc.). The computational core of exchange
manages the interaction between buy and sell orders.

The challenge in designing the exchange core that guides the interaction
of supply and demand lies in ensuring it meets various criteria, including
regulatory requirements. This becomes a challenge for industry, especially
since this is a system with infinite state space.

We present the sequential core, where orders are matched and processed
in one-by-one fashion, which is still in use in modern electronic markets
(somewhat surprising as the nature of exchange-on-a-trading-venue is rather
parallel and even concurrent). This research is presented in [1] as a formal-
ization in a Concurrent Logical Framework, CLF [2].

Using this formalization we were able to prove two standard properties
of a market operating under these rules. First, we demonstrated that at any
given state, the bid price is always lower than the ask price, ensuring the
market is never in a locked or crossed state. Secondly, we proved that trades
always occur at either the bid price (best available offer to buy) or the ask
price (best available offer to sell).

We will discuss approaches towards designing a new model, from the
ground up, that better aligns with the nature of the exchange-on-a-trading-
venue operation. Perhaps we can also obtain a preliminary understanding
of the decentralized market model (important for DeFi).
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Since we address a possible innovation on the side of finance (the domain
of fundamental market design and continuous double auctions), a closely
related economics research can be found in [3, 4]. Another related work
on applications of logic-based formal methods in fixing the electronic mar-
kets is [5].

This talk is in good part based on [1], a joint research with Iliano Cervesato,
Giselle Reis and Sharjeel Khan.
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