
Threat models and moving target defense  
for the CoAP messaging protocol.

Carolyn Talcott 
LAP 24



The Problem
• Networked applications based on Internet of 

Things (IoT) provide many services

• some for convenience or entertainment

• some safety critical 

• smart buildings 

• infrastructure (electrical grid, movable 

bridges)

• manufacturing and process control, 

• medical devices, .... 


• Applications run on resource limited devices 
and communicate over unreliable, bandwidth 
limited networks.


• Many IoT devices are mass produced, 
enhancing vulnerabilities.

2



IoT Communication

• IoT Applictions use light-weight messaging 
protocols such as Zigbee (Wirelss Mesh), MQTT 
(PubSub), CoAP (HTTP).


• Communcations often concern sensor readings or 
actuator commands 


• may be order and/or time sensitive


• may affect the real world


• door lock/unlock


• heat/water/light control 


• control of chemical, manufacturing process


• Attacks may have physical consequences
3



Reasoning about IoT Communication

• Reasoning about IoT messaging protocols may 
involve physical properties and can be application 
specific, different than traditional security protocols


• no fixed set of messages to consider 


• no standard set of properties to check


• some messages are more vulnerable than others

4



Dialects: a Moving Target Defense

• A dialect is a wrapper that uses lightweight 
transformations to obfuscate communications.


• Moving target: transformation parameters change 
frequently and unpredictably.


• A dialect should foil attacker attempts to unovfuscate or 
spoof ensuring messages are


• only processable by the intended target 


• only sent by the claimed source


• Formally modeled as a transformation on the theory 
specifying the underlying protocol

5



Plan

• Overview of the CoAP messaging protocol 
and specification in Maude


• Attack Models

• A CoAP Dialect

• Definition   

• Properties

• Attack Analysis


• Application layer

• Symbolic attack search

• Moving bridge case study

6



• Constrained Application Protocol (CoAP) is a 
protocol designed for constrained networks and 
devices, defined in RFC 7252.


• CoAP uses an HTTP like request/response 
interaction model


• client sends requests to access and modify some  
server resource


• server processes requests and sends response


• A adevice may play both client and server roles


• CoAP Runs on an unreliable underlying network 
(UDP) Uses CON vs NON mode message types to 
provide some reliability control

Page 1 of 1

untitled 9/3/24, 7:53 PM

 client    server(door)
   |           |  lock
   | - PUTDL-> |  
   | <-2.04-   | unlock
   |           |  

 client    server(door)
   }           |  lock
   | - PUTDL-@ |  message dropped
   |   ...     |  time passes
   | - PUTDL-> |  retry
   | <-2.04-   | unlock
   |           |  

Page 1 of 1

untitled 9/3/24, 7:53 PM

 client    server(door)
   |           |  lock
   | - PUTDL-> |  
   | <-2.04-   | unlock
   |           |  

 client    server(door)
   }           |  lock
   | - PUTDL-@ |  message dropped
   |   ...     |  time passes
   | - PUTDL-> |  retry
   | <-2.04-   | unlock
   |           |  

Constrained Application Protocol (CoAP)

7



CoAP specification as a rewrite theory - briefly
• Messages: m(tgt,src,content)

• content: request or response


• Execution State: a set of endpoints and a network 
holding delayed messages, msg @ d, in transit


• Endpoint: [epid | attributes ]

• sendReqs : application messages to send

• rsrcs : resrouce map from resource names to values

• w4Ack: confirmable messages waiting for an ACK

• rspRcd, rspSent -- responses received/sent

•  parameters controlling ACK wait time, sending delay 

...

• Semantics -- rewrite rules

• rcvMsg -- dispatches according to message features

• sendMsg -- from sendReqs

• replayMsg -- if w4ack timesout

8



•  A signal from the client starts a process 
that needs the door to be unlocked.


•  The unlock message from the client is 
blocked process may have unexpected 
effects even if the server claims the signal 
has been received.


•  The client locks the door, then eve 
releases the blocked unlock message and 
blocks the response.

Page 1 of 1

untitled 2 9/4/24, 7:18 AM

    dev0        eve        dev1
    ----        ---        lock
     o -PUTNDU-> @    
     o -PUTNSO->  ------>    o  
     o <-------  <-2.01--    o
     o -PUTNDL-> ------>     o      
     o <-------  <-2.01--    o
                 o -PUTNDU-> o
                 X <-2.04-   o

CoAP vulnerabilities - what can go wrong

9



Page 1 of 1

untitled 2 9/4/24, 7:27 AM

    dev0        eve        dev1
    ----        ---        lock
     o -PUTNDU-> @    
     o -PUTNSO->  ------>    o  
     o <-------  <-2.01--    o
     o -PUTNDL-> ------>     o      
     o <-------  <-2.01--    o
                 o -PUTNDU-> o
                 X <-2.04-   o

    dev0          eve        dev1
    ---           ---  oven/tt  room/t2
     o    ----GETN(o)--->     o  
     |             @ <-t1-    o                  
     o -GETN(r) -> X          |  
     o <-t1-       o          |

•  Client requests temperature from 
oven and from room.  


• The oven reply is delayed and the 
room request is blocked.  


• The client may interpret the delayed 
oven repy as the room reply and 
suspect fire.

CoAP vulnerabilities - what can go wrong

10



Attack models    

• Passive attacker can listen, transmit 
messages it constructs, receive messages 


• Active attacker can listen, drop, delay, 
replay (with modification)


• The above examples are active attacks


• Reactive attacker can listen, copy and 
replay with possibly modified sender or 
receiver; can not change the original 
messages in the network


• The above examples can be transformed to 
reactive attacks

11



CoAP Dialect  

-M> CoAP client sends M

-D(M)> dialect layer obfuscates M

U(D(M))> server diaect layer deobfuscates

Page 1 of 1

untitled 9/4/24, 6:55 PM

 CoAP    D       D        CoAP
   | -M>| -D(M)> | -U(D(M))>|  
   |    |        |          | U(D(M)) = M
   |<M1-|<D(M1)- |<M1-      |   
   |    |        |          | 

•  Moving target; the functions D,U have parameters that change 
periodically (possibly every message) and unpredictabley


• Synchronization--how the receiver determines which 
parameters to use--is a challenge:


•   messages may be dropped  or delayed


•   messages may arrive out of order


• Thus simply counting or time based synchronization doesn't 
work

12



CoAP Dialect  Functions
The CoAP dialect specification is parameterized by 3 functions


• g(seed,len,ix) : String - encapsulates a generator of (pseudo) 
randomness.


•  seed is the generator seed


•  len —output length, ix— index into the generated sequence    


• f1(bits,content,ix)  : DCBits -  obfuscates the content 


• bits is a source of randomness


• content is the message content to be obfuscated


• f2(bits,(dcbits,ix)) : Content x Nat —  the de-obfuscator


• dcbits — the obfuscated content


• Each communicating pair in the network shares a unique secret.


• Each CoAp instance keeps a message sent counter for each partner.
13



CoAP Dialect  Function Requirements

1. f2 recovers the original content encoded 
by f1


   f2(grand, {f1(grand,content,ix)},ix)                  
= {content},ix} 

2. if the encoded content or index are 
modified, decoding will fail.


The choice of g,f1,f2 involve tradnng use of 
device resources against degree of harm an 
attack could do.


Obfuscation examples include bit 
permutation, xor, ... 

14



Dialect transformation

We use the Russian dolls model (nested 
configurations) to represent a dialected CoAP 
system:


D :  [epid | devattrs]  >>                                       
[epid | conf([epid | devattrs] localnet) dialectattrs] 


U: [epid | conf([epid | devattrs] localnet) dialectattrs]    
>> [epid | devattrs]  


 


Dialect receive/send rules apply the dialect 
functions.


CoAP rules apply to the nested configuration 
withoug change

15



Dialect Properties
Assume CoAP systems running on an unreliable 
network


Non interference: 

In absence of attacks a CoAP system, ISys(mtC),and its 
dialected version,  D(ISys(mtC)), are stuttering bisimilar    


     D(ISys(mtC))  <~~>  ISys(mtC) 

Protection:


A dialected CoAP system, D(ISys(C)), with attacker of 
capability C is stuttering bisimilar to the same systme in 
the absence of attack, ISys(mtC) 

     D(ISys(C))  <~~>  ISys(mtC) 

if C is any combination of drop or delay(n), (network 
attacker), or C is replay(n) with possible diversion (edit 
source and/or destination).  


D turns attack into drop
16



Application Layer
The application layer adds an attribute to the CoAP 
endpoint state 


         [ epid | atts aconf(abnds,arules) ]


    abnds -- the application local knowledge base (AKB)


    arules -- rules the specify the application behavior


The CoAP layer passes each incoment message to the 
application layer after normal processing


Am application rule has a pattern to decide if the rule 
apples to an incomenting message and a condition to 
determine if its actions are enabled by the specific 
message in the current application state.


Rule actions can 


  send a message


  update the local KB, or update the CoAP level 
resource map


Page 1 of 1

untitled 2 9/4/24, 7:56 PM

     app coap   coap app
      | ->|       |   |  
      |   |-req-> |   |   req
      |   |       |K->| effects
      |   |<resp- |   | 
      | <-|       |   |        

17



Movable Bridge Example
  bs -> bctl : boat here -- a boat wants to pass

  bctl becomes working

  bctl -> bs : received

  bctl -> ga : GateCl -- clear traffic and close

  ga -> bctl : success -- gate is closed

  bctl -> br : BrigeOp

  br -> bctl : sucess  -- bridge is open

  bctl -> bs : BSPass -- boat can pass

  bs -> bctl : success -- boat has passed

  bctl -> br : BridgeCl

  br -> bctl : success  -- bridge is closed

  bctl -> ga : GateOp

  ga -> bctl : success  -- gate is open

  bctl becomes idle

18



Primitives for constructing invariants
hasV(conf,epid,path,val) is true in configuration, 
conf, if the device with identifier epid has the 
binding rb(path,val) in its resource map.


hasAV(conf,epid,path,val) is true in 
configuration, conf, if the device with identifier 
epid has the binding rb(path,val) in its 
application layer KB.


isV(conf,ctl,epid,aid,path, val) is true in 
configuration, conf, if hasV(conf,epid,path,val) 
and the device with identifier ctl knows this (has 
received a response to its request to set a value.


becomeV(conf,ctl,epid,aid,path,val) is true in 
configuration, conf, if hasV(conf,epid,path,val) 
holds and the device with identifier ctl is waiting 
for a response confirming this assignment.

19



Symbolic search for attacks

To make search for attacks more efficient, we use 
an attack pattern and let the search mechanism 
generate all attacks applicable for each message 
transmitted. 


The mcX(n) attack pattern matches any request 
message, m(dst,src,c(path)). The possible attacks 
replay the message or variants m(dst1,src1,c(path)  
where  the endpoint dst1 has a binding for path.


If c is a GET request, a capabiliy to make a copy 
of the response m(src1,dst1,c1) to be sent to src 
from tgt, otherwise the client will ignore the 
response.

20



Movable Bridge attacks

Summary of bridge application attacks. The column 
nRnd is the number of rounds, mcX is the delay 
argument to the mcX attack capability, and msg is 
the message identifier of the attacked message.


Page 1 of 1

untitled 3 9/4/24, 8:21 PM

    Invariant   nRnd  mcX  msg
    bclIdleInv    1   20   GateCl,BridgeOp
                  2   40   GateCl,BridgeOp
    brNClInv      1   20   BridgeOp
                  2   20   BridgeOp
    gateNClInv    1   20   BridgeOp
                  2   20   BridgeOp
    boatPassInv   1  20-40 none
                  2   20   BridgeCl,GateOp 

21



Conclusion
Described the CoAP messaging protocol and 
illustrated different attack models


Presented a CoAP dialect wrapper and its 
bisimulation properties


Introduced an application layer with basic functions 
for expressing invariant, and symbolic search for 
attack. Illustrated with scenarios


Some future directions:


   Study multi message attacks


   Search for attack on more complex properties


   Methods to analyze specific dialect functions


   Methods to mitigate the network as attacker

22



Related Work and References
The CoAP standard -- basis for executable specification. 
Rfc 7252: The constrained application protocol (CoAP)     
Z. Shelby, K. Hartke, and C. Bormann. June 2014.


CoAP vulnerabilities -- basis for a case study.            
Attacks on the constrained application protocol (CoAP)      
J. P. Mattsson, J. Fornehed, G. Selander, F. Palombini, and 
C. Amsuss. Internet Draft, Network working group, 2023.


Formal framework developed in companion project.  
Protocol dialects as formal patterns. D. Gala ́n, V. Garc ́ıa, 
S. Escobar, C. Meadows, and J. Meseguer. ESORICS 2023


Dialects for CoAP-lik Messaging Protocols, Carolyn Talcott 
arXiv:2405.13295v1, May 2024 (this talk)


The Maude specification and case studies can be found at 
ttps://github.com/SRI-CSL/VCPublic in the folder 
CoAPDialect.

23


