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Carl Friedrich Gauss:  

If e iπ = -1 was not immediately apparent to a student upon being told it, 

that student would never become a first-class mathematician [D].  

 



Existence criterion  

W. O. Quine [Q]:  Fs exist if ∃xFx is a theorem of a true theory.  
 

M. Steiner [Mr]: It is possible to satisfy this condition without being real.  
 

Reality criterion 

P. Bridgman [B] p.56:  
Something is physically real if it is connected with physical phenomena 
independent of those phenomena which entered its definition.  
 

E. Nagel [N] p. 147: 
A term designating anything physically real must enter into more than one 
experimental law, with the proviso that the laws are logically independent of 
each other.  



I think that there is something profoundly right in the idea that the real is 
that which has properties transcending those which enter its definition.  
 

To demonstrate the reality of an entity in the natural sciences one shows 
that the entity is indispensable in explaining some new phenomenon, 
independent of those phenomena which entered its definition. So, a real 
entity has a new and independent description.  

Steiner applies the same idea in mathematics.  
 

π is real because we have two independent descriptions for π. 
 

1)     Geometric, π = C/2r. 

2)    Analytic, π = ln (-1)/i. 
 

One is derived from C = 2rπ, another from eπi = -1. 



In the natural sciences, we prove the coreference of two descriptions 
empirically. In mathematics, we do this with a deductive proof. 

But when are provably coreferential descriptions independent? 
 

Steiner’s distinguish between proofs which are nonexplanatory and merely 
demonstrate the coreference, and those which explain it.  

Descriptions are independent if the proofs of their coreferentiality are 
nonexplanatory. 
 

The distinction is rather vague [Me]:  

An explanatory proof makes reference to a characterizing property of an 
entity or structure mentioned in the theorem, such that from the proof it is 
evident that the result depends on the property.  
 



Steiner explains this difference only with a few examples. 
 

Nonexplanatory proof that √2 is irrational: 

If a2 = 2b2 and a/b reduced, then a2 and hence a have to be even. Thus a2 
must be a multiple of 4, so b2 and hence b must be multiples of 2 (⊥).  
 
Nonexplanatory proof that a2 ≠ nb2, unless n is a perfect square: 

Assume a/b is reduced. If a prime p divides b and hence b2, it must divide 
a2 and hence a (⊥). So b = 1 and n is a perfect square.  
 

Explanatory proof, because FTA is the characteristic property: 

In the prime power expansion of a2 the prime 2 will appear with an even 
exponent while in 2b2 its exponent must be odd. So a2 never equals 2b2.  



Steiner’s example of the explanatory proof of the Pythagorean Theorem. 
 

 
 

Three similar figures constructed on a, b, c have areas ka2, kb2, kc2.  
 

If ka2 + kb2 = kc2, the Pythagorean Theorem follows immediately.  
 

Thus Pythagorean Theorem is equivalent to a generalization; and the 
generalization to any of its instances. 
 

Triangles I, II and T are similar to each other and I + II = T. 



Steiner considers this proof to be explanatory because: 
 

 It characterizes the right triangle as the only one decomposable into two 
triangles similar to each other and to the whole.  
 

The characterizing property for right triangles is the coincidence of x and y. 

 

 
 



Nonexplanatory proof of 𝑆(𝑛) =
𝑛(𝑛+1)

2
  by induction: 

 

𝑆(𝑛 + 1) = 𝑆(𝑛) + (𝑛 + 1) =
𝑛(𝑛 + 1)

2
 +

2(𝑛 + 1)

2
 =

(𝑛 + 1)(𝑛 + 2)

2
. 

Explanatory proof, by symmetry: 

 

 

 
 

The characterizing property is the symmetry of the sum. 
 

It seems to me that the "independence of the descriptions of two 
mathematical entities" is not additionally explained by the "absence of 
explanatory proofs of their coreference", so I will stick to “independence”. 

1 + 2 + 3 + … + n = S 

n + (n-1) + (n-2) + … + 1 = S 

(n+1) + (n+1) + (n+1) + … + (n+1) = S 



As an example of real entity, Steiner tries to prove that π is real, because 
its geometric and analytic descriptions are independent [Mr]. 

 

To illustrate the claim, consider the astounding formula 𝑒𝑖𝜋 + 1 = 0, a 
"miracle" if anything is. It links the five fundamental constants of analysis in 
a most beautiful, simple way … There seems no reason whatsoever to 
expect that such independently introduced numbers should be so simply 
related [my emphasis].  

 

According to Steiner, there seems no reason whatsoever to expect that π, 
as a constant of proportionality between the circumference and the 
radius of the circle, be in relation to e, i, 0 and 1, as claimed by Euler's 
formula, because the proof of the formula itself does not relate these two 
independent descriptions of π in any way. 



Steiner is referring to a common proof:  
 

Starting from the number e (= 2.72.... ), defined as lim
𝑛→∞

(1 +
1

𝑛
)

𝑛
, … 

demonstrate using techniques of the calculus [i.e. Taylor expansion of a 
function as an infinite polynomial], that  
 

(1)                                              𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+ ⋯ . 

 

In order to define complex exponentiation we substitute it for x  
 

(2)                                             𝑒𝑖𝑡 = 1 +
𝑖𝑡

1!
−

𝑡2

2!
−

𝑖𝑡3

3!
+

𝑡4

4!
+

𝑖𝑡5

5!
− ⋯ 

                               = (1 −
𝑡2

2!
+

𝑡4

4!
−

𝑡6

6!
+ ⋯ ) + 𝑖 (

𝑡

1!
−

𝑡3

3!
+

𝑡5

5!
+ ⋯ ) 



But it is known, using the same technique which yielded the expansion of 𝑒𝑥, 
that for real t, 

(3)                                               cos 𝑡 = 1 −
𝑡2

2!
+

𝑡4

4!
−

𝑡6

6!
+ ⋯ 

                                                     sin 𝑡 =
𝑡

1!
−

𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
+ ⋯ 

 

Substituting, we get the magic formula 

(4)                                              𝑒𝑖𝑡 = 𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡. 
 

Substituting t = π, we have our results, 

(5)                                               𝑒𝑖𝜋 = −1. 
 

Assuming that geometry and analysis are suitably independent, our criterion 
thus yields the reality of π. 



Where did the magic come in?  
 

Formula (1) is the standard Taylor’s expansion.  
 

Formula (2) is an extension of formula (1) to complex numbers.  
I suppose this generalization is not questionable. It is a common way of 
extending definitions from the real to the complex field.  
 

Transitions from (3) to (4) and (5) are trivial substitutions.  
 

Hence, formula (3) remains as the only possible miracle:  
 

How is it that the geometric descriptions of sinus and cosine coincide with 
the analytical descriptions in (3)?  

There is no miracle here, cf. [Š]. 



Start with the geometric descriptions of x = sin t and y = cos t: 

 
It follows immediately that 

𝑑𝑥

𝑑𝑡
= −

𝑦

1
   &   

𝑑𝑦

𝑑𝑡
=

𝑥

1
           𝑖. 𝑒.           

𝑑𝑐𝑜𝑠𝑡

𝑑𝑡
= −𝑠𝑖𝑛𝑡   &   

𝑑𝑠𝑖𝑛𝑡

𝑑𝑡
= 𝑐𝑜𝑠𝑡 

 

∫ 𝑐𝑜𝑠𝑡 𝑑𝑡 = 𝑠𝑖𝑛𝑡 + 𝐶     &      ∫ 𝑠𝑖𝑛𝑡 𝑑𝑡 = −𝑐𝑜𝑠𝑡 + 𝐶 



𝑐𝑜𝑠𝑥 ≤ 1 ⇒ ∫ 𝑐𝑜𝑠𝑥 𝑑𝑥
𝑡

0

≤ ∫ 𝑑𝑥 ⇒
𝑡

0

𝑠𝑖𝑛𝑡 ≤ 𝑡, 𝑓𝑜𝑟 𝑡 > 0    

 

𝑠𝑖𝑛𝑥 ≤ 𝑥, 𝑓𝑜𝑟 𝑥 > 0 

 

𝑠𝑖𝑛𝑥 ≤ 𝑥 ⇒ ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥
𝑡

0

≤ ∫ 𝑥𝑑𝑥 ⇒
𝑡

0

1 − 𝑐𝑜𝑠𝑡 ≤
𝑡2

2
, 𝑓𝑜𝑟 𝑡 > 0    

 

1 − 𝑥2/2 ≤ 𝑐𝑜𝑠𝑥, 𝑓𝑜𝑟 𝑥 > 0 

 

1 −
𝑥2

2
≤ 𝑐𝑜𝑠𝑥 ⇒ ∫ (1 −

𝑥2

2
) 𝑑𝑥

𝑡

0

≤ ∫ 𝑐𝑜𝑠𝑥𝑑𝑥 ⇒
𝑡

0

𝑡 −
𝑡3

3!
≤ 𝑠𝑖𝑛𝑡, 𝑓𝑜𝑟 𝑡 > 0    

 

𝑥 − 𝑥3/3! ≤ 𝑠𝑖𝑛𝑥, 𝑓𝑜𝑟 𝑥 > 0 



1 −
𝑥2

2!
+

𝑥4

4
+ ⋯ +

𝑥4𝑛−4

(4𝑛 − 4)!
−

𝑥4𝑛−2

(4𝑛 − 2)!
≤ 𝑐𝑜𝑠𝑥 ≤ 1 −

𝑥2

2!
+

𝑥4

4
+ ⋯ +

𝑥4𝑛−4

(4𝑛 − 4)!
 

 

𝑥 −
𝑥3

3!
+

𝑥5

5!
− ⋯ +

𝑥4𝑛−3

(4𝑛 − 3)!
−

𝑥4𝑛−1

(4𝑛 − 1)!
 ≤ 𝑠𝑖𝑛𝑥 ≤ 𝑥 −

𝑥3

3!
+

𝑥5

5!
− ⋯ +

𝑥4𝑛−3

(4𝑛 − 3)!
 

 

(Since the cosine is an even function and the sine is an odd function, it is 
obvious that the inequalities also hold for x ≤ 0, i.e. they hold for all x.) 
 

Hence, (3) is not independent of the geometric descriptions of sine and 
cosine. There are no miracles here. 
 

And Newton, who first proved (3), started from the geometric description 
of sine and cosine [Nw]. There were no miracles even in the beginning. 



 
 

𝑥2+𝑦2 = 1 ⇒ 𝑥𝑑𝑥 + 𝑦𝑑𝑦 = 0 ⇒  (𝑑𝑥)2 =
𝑦2(𝑑𝑦2)

𝑥2   ⇒ 𝑑𝑡 = √𝑑𝑥2+𝑑𝑦2 =
𝑑𝑦

√1−𝑦2
    

 

𝑡 = ∫ 𝑑𝑡 =
𝑡

0 ∫
𝑑𝑦

√1−𝑦2
= (𝑏𝑦 𝑁𝑒𝑤𝑡𝑜𝑛 𝑏. 𝑓. ) =

𝑦

0
 ∫ (1 +

1

2
𝑦2 −

𝑦

0

3

4
𝑦4 + ⋯ )𝑑𝑦  ⇒ 

 

𝑡 = 𝑦 +
1

6
𝑦3 −

3

20
𝑦4 + ⋯ (𝑏𝑦 𝑁𝑒𝑤𝑡𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑓𝑜𝑟 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠)    ⇒ 

 

                                              𝑦 = 𝑡 −
𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
+

𝑡9

9!
+ ⋯ 



Let's deal with the very origin of the functions 𝑦 = 𝑙𝑛 𝑥 and 𝑥 = 𝑒𝑦. 
 

Many people are surprised by the fact that the first discovered logarithms 
were natural logarithms, that is, those with an unusual base 2.71828 … .  
 

They are even more surprised when they learn that these logarithms are 
the easiest to calculate and that's why they were the first to be found.  
 

Astonishment is justified if the logarithmic table is seen as a 
correspondence between real numbers 𝑥 and 𝑦, because at the time of 
the discovery of logarithms, fractional powers were not known yet; 
exponents were exclusively natural numbers.  
 

Nevertheless, natural logarithms were successfully defined for 𝑥 ∈ ℝ?!  
 



Tables of integer powers, like 𝑥 = 2 𝑌, were known a long time ago. 

 

 

 
 

𝑥1 ⋅ 𝑥2 = 𝑥3    ⟺    𝑌1 + 𝑌2 = 𝑌3. 
 

This clearly showed how multiplication can be reduced to addition.  
 

However, the practical value of 𝑥 = 2 𝑌 table is negligible due to the large 
differences between the available 𝑥’s.  
 

If the variable 𝑌 receive positive integer values, how will we get a finer 
distribution of 𝑥's? Take 𝑏 ≈ 1!  

𝑌 0 1 2 3 4 5 6 … 

𝑥 1 2 4 8 16 32 64 … 



In 1614 Bürgi chose b = 1.0001 and Napier chose b = 0.9999999.  
 

Let’s follow Bürgi. In order to calculate 𝑥 = 1.0001 𝑌+1, Bürgi used the 
previously calculated 𝑥 = 1.0001 𝑌, but not for the calculation of the next 
𝑥, but for the calculation of the increment to the next 𝑥. 

𝑥 + Δ𝑥 = 1.0001 𝑌+1 

Δ𝑥 = (𝑥 + Δ𝑥) − 𝑥 =  1.0001 𝑌+1 − 1.0001 𝑌  = 

1.0001 𝑌(1.0001 − 1)  =  
𝑥

10000
. 

 

How is the table of logarithms calculated? Very easy. 

For given x, move the decimal point 4 places to the left, get Δ𝑥, add to x.  



 

 

 

 

 

Scale down 𝑌, by factor 1

104, to get  𝑦 =
𝑌

104 . 

 

 

 

 

 

𝑌 𝑥 Δ𝑥 

0 1 0.0001 

1 1.0001 0.00010001 

2 1.00020001 0.000100020001 

3 1.000300030001 Etc. 

𝑦 𝑥 

0.0000 1 

0.0001 1.0001 

0.0002 1.00020001 

0.0003 1.000300030001 



Let's see what is happening here from today's point of view. We have  
 

𝑥 = 1.0001𝑌  =  1.000110000𝑦  = ((1 +
1

10000
)

10000
)

𝑦

 ≈ 𝑒𝑦 i.e. 𝑦 ≈ 𝑙𝑛 𝑥.  

 

If, in the 𝑌-table, we selected the base closer to 1 we would get finer 
distribution of 𝑥's and better approximation of natural logarithms. 
 

But, the historical transition to natural logarithms was geometric.  
 

∆𝑦 =
1

104
 &  ∆𝑥 =

𝑥

104
   ⇒   ∆𝑦 =

∆𝑥

𝑥
   ⇒    𝑦 = ∑ ∆𝑦 = ∑

∆𝑥

𝑥

𝑥

1

𝑥

1

 



 
 

If the base 𝑏 is closer to 1, then the rectangles have smaller areas, and at 
the limit we get the surface under the hyperbola, i.e.  
 

ln𝑥 = ∫
𝑑𝑥

𝑥

𝑥

1

 . 

 

 

This transition was made by Mercator in 1667.  



So, the natural definition of the natural logarithm in the complex plane is 
 

ln 𝑧 = ∫
𝑑𝑧

𝑧

𝑧

1

 . 

In ℝ, there is only one path from 1 to every z > 0. 
 

 
 

In ℂ, there are many paths from 1 to every z ≠ 0). 
 

 
 

The calculation of ln𝑍 is straightforward.    



 



Hence, 

ln(−1) = ∫
𝑑𝑟

𝑟
+ 𝑖 ∫ 𝑑𝜑 = 𝑖𝜋.

𝜋

0

1

1

 

 

It means that the analytic and geometric descriptions of π are identical: 

 
 

π =
ln (−1)

𝑖
= ∫ 𝑑𝜑 =

𝐶

2

𝜋

0

= 𝜋 

 

In both cases it is the circumference of the semicircle. 



We have proved beyond any doubt that π is not real in Steiner's sense.  
 

As a matter of fact, it is difficult to prove for any mathematical concept 
that it is real in Steiner's sense. 
 

We have to find two descriptions of a concept and a proof of their 
coreference, which keeps the descriptions independent.  
 

But mathematical theories are deeply connected and mathematicians 
constantly strives to discover these connections.  
 

For example, it is typical for mathematicians to persistently search for 
new proofs of old theorems in order to discover these dependencies. 

 



 

 

My hypothesis is that no 
mathematical concept 

is real in Steiner’s sense. 
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Tycho Brahe′s assistent Paul Wittich introduced the method of 

prostaphairesis (προσϑεσις = addition, αϕαιρεσις = subtraction) 
 

61620 ∙ 45318 = 2792495160 ? 

 

0. 61620 = sin 38.039∘             0. 45318 = sin 26.948∘ 

 

sin 𝛼 sin 𝛽 = (cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽))/2 

 

(sin 38.039∘)(sin 26.948∘) = (cos 11.091∘ − cos  64.987∘)/2 = 

 

(0.9813219765 − 0.42282294)/2 = 0.279249516 


