Logic and Applications IUC Dubrovnik September 23-27, 2024 Effective analogue of an ultraproduct of structures Valentina Harizanov George Washington University harizanv@gwu.edu https://blogs.gwu.edu/harizanv

Standard models

- A *nonstandard* model of a theory is a model that is not isomorphic to the intended, standard model.
- For example, the standard model of Peano arithmetic, N = (ω, +, ·, 0, 1), consists of the set ω = {0, 1, 2, 3, ...} with operations of addition + and multiplication ·, and constants 0 and 1.
- The standard order of natural numbers is $\mathbb{N} = (\omega, <)$.
- Complete number theory is the set of all first-order sentences (with any number of quantifiers) which are true in the standard model of arithmetic.

Ultrapower construction

- Ultrapower constructions produce nonstandard models of theories.
- Let \mathcal{A} be a countable structure with the domain A.

An ultrafilter U is a certain set of large subsets of ω .

- An *ultrap*ower is a direct product of countably infinitely many copies of \mathcal{A} modulo $=_U$, in symbols $\mathcal{B} = \prod_U \mathcal{A}$, with the domain B.
- The elements of *B* are equivalence classes of infinite sequences *f* of elements in *A* : (*f*(0), *f*(1), *f*(2), ...).

• The equivalence class of f is denoted by [f].

```
[f] = [g] \text{ iff } \{i : f(i) = g(i)\} \in U
```

- In $\prod_U \mathcal{N}$, [id] = [(0, 1, 2, 3, ...)] is a new, nonstandard number.
- $\prod_U \mathcal{A}$ is typically uncountable. The existence of nontrivial U's uses Zorn's Lemma.
- $\prod_U \mathcal{A}$ has the same first-order theory as \mathcal{A} .

We say they are *elementarily equivalent*.

Algorithmic (effective) ultrapower

- A structure is *computable*.
- Ultrafilters are replaced by infinite sets previously studied in computability theory, which are *indecomposable* with respect to *computably enumerable* sets.
- The elements of the product are equivalence classes of *partial computable functions*.
- Hence an effective ultrapower of a structure is a countable structure.

Computable structures

- A set is *computable* if there is a decision algorithm that recognizes its elements and non-elements.
- A countable structure \mathcal{A} with finitely many operations and relations is *computable* if its domain is computable and its operations and relations are computable.
- Examples of computable structures: $\mathcal N$

The ordered set of natural numbers, \mathbb{N} (of order type ω) The ordered set integers, \mathbb{Z} The ordered set of rational numbers, \mathbb{Q} The additive group of integers, (Z, +, 0)The field of rational numbers, $(Q, +, \cdot, 0, 1)$ • Example of a non-computable structure

Let H be a non-computable set, say the halting set.

Define a linear order $(\{0, 1, 2, ...\}, \prec)$ isomorphic to \mathbb{N} (of order type ω):

$$2n \prec 2n+1$$
 if $n \in H$
 $2n+1 \prec 2n$ if $n \notin H$

$$2n, 2n+1 \prec 2n+2, 2n+3$$

 $0,1\prec 2,3\prec 4,5\prec \cdots$

- If this order were computable, then H would be computable.
- Tennenbaum's Theorem There is no computable nonstandard model of Peano arithmetic.

Computably enumerable sets

- A nonempty set W of natural numbers is computably enumerable if there is an algorithm that generates it by enumerating (i.e., listing) its elements: W = {w₀, w₁, w₂, ...}
- If W is finite or its elements can be algorithmically enumerated in strictly increasing order, then W is *computable*.
- There are many non-computable computably enumerable sets.

Partial computable functions

- Let $P_0, P_1, ..., P_e, ...$ be an algorithmic enumeration (given by systematic listing) of all Turing machine programs.
- Turing machine program P_e computes a *partial computable* (possibly total, thus computable) function φ_e :

on input x, it halts and outputs its value, in symbols $\varphi_e(x) \downarrow$, when $x \in dom(\varphi_e)$, or it computes forever, in symbols $\varphi_e(x) \uparrow$, when $x \notin dom(\varphi_e)$.

• Also, we have an algorithmic enumeration of all computably enumerable sets:

 $W_0, W_1, ..., W_e, ...$

Cohesive Sets

• A set C of natural numbers is *cohesive* if C is infinite and for every computably enumerable set W, either $W \cap C$ or $\overline{W} \cap C$ is finite.

Hence:

 $W \cap C \text{ is infinite} \Rightarrow C \subseteq^* W$ $\overline{W} \cap C \text{ is infinite} \Rightarrow C \subseteq^* \overline{W}$

 \subseteq^* stands for inclusion of all but finitely many elements

• Every infinite set of natural numbers has a cohesive subset.

Effective (Cohesive) Ultrapowers

• Let \mathcal{A} be a computable structure with domain A, and let C be a cohesive set of natural numbers.

The cohesive ultrapower of \mathcal{A} over C, in symbols $\mathcal{B} = \prod_C \mathcal{A}$, has the domain $(D \mod =_C)$ where

 $D = \{ \varphi \mid \varphi : \omega \to A \text{ is partial computable and } C \subseteq^* dom(\varphi) \}.$

For $\varphi, \psi \in D$, define

$$\varphi =_C \psi$$
 iff $C \subseteq^* \{i : \varphi(i) \downarrow = \psi(i) \downarrow\}.$

The equivalence class of φ is denoted by $[\varphi]$.

• If F is an n-ary operation (function) symbol, then

$$F^{\mathcal{B}}([\varphi_1],\ldots,[\varphi_n])=[\varphi],$$

where for every $i \in \omega$,

$$arphi(i) = F^{\mathcal{A}}(arphi_1(i),\ldots,arphi_n(i)),$$

equal as partial functions.

• If R is an m-ary relation symbol, then

 $R^{\mathcal{B}}([\varphi_1],\ldots,[\varphi_m]) \quad \text{iff} \quad C \subseteq^* \{i \in \omega : R^{\mathcal{A}}(\varphi_1(i),\ldots,\varphi_m(i))\}$

• If c is a constant symbol, then $c^{\mathcal{B}}$ is the equivalence class of the computable function with constant value $c^{\mathcal{A}}$.

- Canonical embedding of A into Π_CA: a → [θ_a], where θ_a = (a, a, ...).
- For a finite structure \mathcal{A} , we have $\Pi_C \mathcal{A} \cong \mathcal{A}$.
- For an infinite computable structure \mathcal{A} , the effective ultrapower $\Pi_C \mathcal{A}$ and \mathcal{A} do not necessarily have the same theory.
- If \mathcal{A} and \mathcal{B} are computably isomorphic, then $\Pi_C \mathcal{A} \cong \Pi_C \mathcal{B}$.

Preservation of satisfaction

• Dimitrov's Theorem

(i) If σ is a $\forall \exists$ (or $\exists \forall$) sentence, then

 $\Pi_C \mathcal{A} \vDash \sigma \quad \text{iff} \quad \mathcal{A} \vDash \sigma$

(ii) If σ is a $\exists \forall \exists$ sentence, then

if $\mathcal{A} \vDash \sigma$ then $\prod_C \mathcal{A} \vDash \sigma$

• If \mathcal{A} has more decidability, then more satisfaction is preserved.

- If a computable structure \mathcal{A} is from one of the following classes, then so is its effective ultrapower $\Pi_C \mathcal{A}$:
 - fields
 - structures with an equivalence relation
 - graphs
 - structures with a single one-to-one function (directed graphs)
 - other directed graphs obtained from functions
 - linear orders

 There are ∀∃∀ sentences true in some computable A, but not in Π_CA (for some C). • (Feferman, Scott and Tennenbaum; Lerman)

There is a $\forall \exists \forall$ sentence (involving Kleene's T predicate), which is true in \mathcal{N} , the standard model of arithmetic, but not in $\Pi_C \mathcal{N}$.

• Proof sketch.

Let P_e be the *e*-th Turing machine program.

In Kleene's predicate T(e, x, z), e refers to P_e , x is the input, and z codes the output and the number s of computation steps.

Consider the sentence:

 $(\forall x)(\exists s)(\forall e \leq x)[P_e(x) \downarrow \Rightarrow P_{e,\leq s}(x) \downarrow]$

Cohesive powers and their isomorphism types have been studied for:

- The field of rational numbers, (Q, +, ·, 0, 1), by Dimitrov, Harizanov,
 R. Miller and J. Mourad
- Linear orders by Dimitrov, Harizanov, Morozov, Shafer, A. Soskova and Vatev
- Structures with an equivalence relation, certain graphs, and function structures (A, f) for various unary functions by Harizanov and Srinivasan

Cohesive powers of linear orders

- We use + for the sum and × for the lexicographical product of two linear orders.
- We can show that for \mathbb{N} , we have $\Pi_C \mathbb{N} \cong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z})$.
- Let \mathcal{L} be a computable dense linear order without endpoints, say \mathbb{Q} . Then $\Pi_C \mathcal{L} \cong \mathcal{L}$.
- Proof. The first-order theory of dense linear orders without endpoints is ∀∃-axiomatizable and countably categorical (has only one countable model, up to isomorphism).

 $\Pi_C \mathcal{L}$ is countable, so $\Pi_C \mathcal{L} \cong \mathcal{L}$.

• Assume that $\mathcal{L}, \mathcal{L}_0, \mathcal{L}_1$ are computable linear orders, and \mathcal{L}^{rev} is the reverse of \mathcal{L} .

•
$$\Pi_C (\mathcal{L}_0 + \mathcal{L}_1) \cong \Pi_C \mathcal{L}_0 + \Pi_C \mathcal{L}_1$$

 $\Pi_C (\mathcal{L}_0 \times \mathcal{L}_1) \cong \Pi_C \mathcal{L}_0 \times \Pi_C \mathcal{L}_1$
 $\Pi_C \mathcal{L}^{rev} \cong (\Pi_C \mathcal{L})^{rev}$

• For example,

 $\Pi_C \mathbb{N}^{rev} \cong (\Pi_C \mathbb{N})^{rev} \cong (\mathbb{N} + (\mathbb{Q} \times \mathbb{Z}))^{rev} \cong (\mathbb{Q} \times \mathbb{Z}) + \mathbb{N}^{rev}$

• Similarly,

 $\Pi_C \mathbb{Z} \cong \Pi_C (\mathbb{N}^{rev} + \mathbb{N}) \cong \mathbb{Q} \times \mathbb{Z}$

When the successor function is computable

 Let A be a computable linear order of order type ω, with a computable successor function. Then for every cohesive set C, we have Π_CA ≅ N + (Q × Z).

 \mathcal{A} is computably isomorphic to the standard model \mathbb{N} .

- Having a computable successor function is not necessary for this order type of an effective ultrapower.
- There is a computable linear order A of order type ω, with a non-computable successor function, such that for every cohesive C, we have Π_CA ≅ N + (Q × Z).

When $\Pi_C \mathcal{L} \cong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z})$

 Let C be a cohesive set. There is a computable linear order L of order type ω such Π_CL and N + (Q × Z) are not elementarily equivalent.

• Proof sketch

Construct a computable linear order $\mathcal{L} = (X, <_{\mathcal{L}})$ of order type ω .

Assure that if φ is a partial computable function such that

[id] $<_{\Pi_{C}\mathcal{L}} [\varphi]$, then $[\varphi]$ is not the $<_{\Pi_{C}\mathcal{L}}$ -immediate successor of [id].

- It follows that Π_C L and ℕ + (ℚ × ℤ) are not elementarily equivalent because every element of ℕ + (ℚ × ℤ) has an immediate successor, but [id] ∈ Π_C L does not have an immediate successor.
- The sentence σ that states that every element has an immediate successor is a ∀∃∀-sentence. Then for the computable linear order *L* of type ω, constructed above, we have *L* ⊨ σ but Π_C*L* ⊨ ¬σ.

When cohesive sets have computably enumerable complements

• A set $M \subseteq \omega$ is *maximal* if M is computably enumerable and its complement $\overline{M} = C$ is cohesive.

Equivalently, M is computably enumerable, \overline{M} is infinite, and for every computably enumerable set W with $M \subseteq W \subseteq \omega$, either $\omega - W$ or W - M is finite.

- For every $[\varphi] \in \Pi_C \mathcal{A}$, there is a (total) computable function f such that $[f] = [\varphi]$.
- **Proof.** Define $\widehat{f}(n) = \begin{cases} \varphi(n) & \text{if } \varphi(n) \downarrow \text{ first,} \\ 0 & \text{if } n \text{ is enumerated into } M \text{ first.} \end{cases}$

 $\widehat{f}(n)$ is defined for all but finitely many n.

- Fix C to be a co-maximal set.
- There is a computable linear order \mathcal{L} of order type ω such that $\Pi_C \mathcal{L} \cong \mathbb{N} + \mathbb{Q}$.
- There is a countable set of computable linear orders of order type ω , the effective ultrapowers of which are pairwise non-elementarily equivalent.
- It is possible for non-elementarily equivalent computable linear orders to have isomorphic effective ultrapowers.

- Let X be a non-empty, at most countable set of order types.
 Let |X| be the size of X.
- The shuffle sh(X) is obtained by densely coloring Q with |X| many colors, assigning to each order type in X a distinct color and replacing each q ∈ Q with the order type corresponding to the color of q.
- Let C be a co-maximal set.
- Let $k_0, ..., k_n$ be positive natural numbers, and $k_0, ..., k_n$ the corresponding ordered sets.
 - k is $0 < 1 < \cdots < k-1$

- There is a computable linear order *M* of order type ω such that Π_C*M* has order type ω + sh(k₀, ..., k_n).
- Let X be a Π⁰₂ or Σ⁰₂ (possibly infinite) set of finite non-empty order types. Then there is a computable linear order L of order type ω such that Π_CL has order type ω + sh(X ∪ {ℕ + (ℚ × ℤ) + ℕ^{rev}}).

THANK YOU!

References

[1] R.D. Dimitrov and V. Harizanov, Countable nonstandard models: following Skolem's approach, in: *Handbook of the History and Philosophy of Mathematical Practice*, B. Sriraman, ed., Springer, 2024, pp. 1989-2009.

[2] R.D. Dimitrov and V. Harizanov, Orbits of maximal vector spaces, *Algebra and Logic* 54 (2016), pp. 440–477 (English translation).

[3] R. Dimitrov, V. Harizanov, A. Morozov, P. Shafer, A.A. Soskova and S.V. Vatev, On cohesive powers of linear orders, *Journal of Symbolic Logic* 88 (2023), pp. 947–1004.

[4] V. Harizanov and K. Srinivasan, *Archive for Mathematical Logic* 63 (2024), pp. 679–702.

(joint work with Rumen Dimitrov, Andrei Morozov, Paul Shafer, Alexandra Soskova and Stefan Vatev)

• Fundamental Theorem for $\Pi_C \mathcal{A}_i$.

Let $(\mathcal{A}_i)_{i \in \omega}$ be a sequence of uniformly *n*-decidable structures, and let *C* be a cohesive set.

(1) Let α(x₁,...,x_m) be a Σ⁰_{n+2} formula. Then
 Π_CA_i ⊨ α([φ₁],...,[φ_m]) ⇒ C ⊆* {i : A_i ⊨ α(φ₁(i),...,φ_m(i))}
 (2) The converse holds for a Π⁰_{n+2} formula.
 (3) The equivalence holds for a Δ⁰_{n+2} formula.

• Say that a formula is Δ_k^0 if it is logically equivalent to both a Σ_k^0 formula and a Π_k^0 formula.

- If \mathcal{A} is a decidable structure, then \mathcal{A} and $\Pi_C \mathcal{A}$ are elementarily equivalent.
- Let \mathcal{A} be an *n*-decidable structure.

Then \mathcal{A} and $\Pi_C \mathcal{A}$ satisfy the same Δ_{n+3}^0 sentences.

If
$$\sigma$$
 is a Σ_{n+3}^{0} sentence, then $\mathcal{A} \models \sigma \Rightarrow \Pi_{C}\mathcal{A} \models \sigma$.