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Standard models

• A nonstandard model of a theory is a model that is not isomorphic

to the intended, standard model.

• For example, the standard model of Peano arithmetic,N = (ω,+, ·, 0, 1),

consists of the set ω = {0, 1, 2, 3, . . .} with operations of addition +

and multiplication ·, and constants 0 and 1.

• The standard order of natural numbers is N = (ω,<).

• Complete number theory is the set of all first-order sentences (with

any number of quantifiers) which are true in the standard model of

arithmetic.



Ultrapower construction

• Ultrapower constructions produce nonstandard models of theories.

• Let A be a countable structure with the domain A.

An ultrafilter U is a certain set of large subsets of ω.

• An ultrapower is a direct product of countably infinitely many copies

of A modulo =U , in symbols B =
∏
U A, with the domain B.

• The elements of B are equivalence classes of infinite sequences f of

elements in A : (f(0), f(1), f(2), ...).



• The equivalence class of f is denoted by [f ].

[f ] = [g] iff {i : f(i) = g(i)} ∈ U

• In
∏
U N , [id] = [(0, 1, 2, 3, . . .)] is a new, nonstandard number.

•
∏
U A is typically uncountable. The existence of nontrivial U ’s uses

Zorn’s Lemma.

•
∏
U A has the same first-order theory as A.

We say they are elementarily equivalent.



Algorithmic (effective) ultrapower

• A structure is computable.

• Ultrafilters are replaced by infinite sets previously studied in

computability theory, which are indecomposable with respect to

computably enumerable sets.

• The elements of the product are equivalence classes of partial

computable functions.

• Hence an effective ultrapower of a structure is a countable structure.



Computable structures

• A set is computable if there is a decision algorithm that recognizes its
elements and non-elements.

• A countable structure A with finitely many operations and relations
is computable if its domain is computable and its operations and re-
lations are computable.

• Examples of computable structures: N

The ordered set of natural numbers, N (of order type ω)
The ordered set integers, Z
The ordered set of rational numbers, Q
The additive group of integers, (Z,+, 0)
The field of rational numbers, (Q,+, ·, 0, 1)



• Example of a non-computable structure

Let H be a non-computable set, say the halting set.

Define a linear order ({0, 1, 2, . . .}, ≺) isomorphic to N
(of order type ω):

2n ≺ 2n+ 1 if n ∈ H
2n+ 1 ≺ 2n if n /∈ H

2n, 2n+ 1 ≺ 2n+ 2, 2n+ 3

0, 1 ≺ 2, 3 ≺ 4, 5 ≺ · · ·

• If this order were computable, then H would be computable.

• Tennenbaum’s Theorem
There is no computable nonstandard model of Peano arithmetic.



Computably enumerable sets

• A nonempty set W of natural numbers is computably enumerable if

there is an algorithm that generates it by enumerating (i.e., listing) its

elements: W = {w0, w1, w2, . . .}

• If W is finite or its elements can be algorithmically enumerated in

strictly increasing order, then W is computable.

• There are many non-computable computably enumerable sets.



Partial computable functions

• Let P0, P1, ..., Pe, ... be an algorithmic enumeration (given by
systematic listing) of all Turing machine programs.

• Turing machine program Pe computes a partial computable (possibly
total, thus computable) function ϕe:

on input x, it halts and outputs its value, in symbols ϕe(x) ↓,
when x ∈ dom(ϕe), or it computes forever, in symbols ϕe(x) ↑,
when x /∈ dom(ϕe).

• Also, we have an algorithmic enumeration of all computably
enumerable sets:

W0,W1, ...,We, ...



Cohesive Sets

• A set C of natural numbers is cohesive if C is infinite and for every

computably enumerable set W , either W ∩ C or W ∩ C is finite.

Hence:

W ∩ C is infinite ⇒ C ⊆∗ W
W ∩ C is infinite ⇒ C ⊆∗ W

⊆∗ stands for inclusion of all but finitely many elements

• Every infinite set of natural numbers has a cohesive subset.



Effective (Cohesive) Ultrapowers

• Let A be a computable structure with domain A,

and let C be a cohesive set of natural numbers.

The cohesive ultrapower of A over C, in symbols B = ΠCA,

has the domain (D mod =C) where

D = {ϕ | ϕ : ω → A is partial computable and C ⊆∗ dom(ϕ)}.

For ϕ,ψ ∈ D, define

ϕ =C ψ iff C ⊆∗ {i : ϕ(i) ↓= ψ(i) ↓}.

The equivalence class of ϕ is denoted by [ϕ].



• If F is an n-ary operation (function) symbol, then

FB([ϕ1], . . . , [ϕn]) = [ϕ],

where for every i ∈ ω,

ϕ(i) = FA(ϕ1(i), . . . , ϕn(i)),

equal as partial functions.

• If R is an m-ary relation symbol, then

RB([ϕ1], . . . , [ϕm]) iff C ⊆∗ {i ∈ ω : RA(ϕ1(i), . . . , ϕm(i))}

• If c is a constant symbol, then cB is the equivalence class of

the computable function with constant value cA.



• Canonical embedding of A into ΠCA: a→ [θa],

where θa = (a, a, ...).

• For a finite structure A, we have ΠCA ∼= A.

• For an infinite computable structure A, the effective ultrapower

ΠCA and A do not necessarily have the same theory.

• If A and B are computably isomorphic, then ΠCA ∼= ΠCB.



Preservation of satisfaction

• Dimitrov’s Theorem

(i) If σ is a ∀∃ (or ∃∀) sentence, then

ΠCA � σ iff A � σ

(ii) If σ is a ∃∀∃ sentence, then

if A � σ then ΠCA � σ

• If A has more decidability, then more satisfaction is preserved.



• If a computable structure A is from one of the following classes, then

so is its effective ultrapower ΠCA:

• fields

• structures with an equivalence relation

• graphs

• structures with a single one-to-one function (directed graphs)

• other directed graphs obtained from functions

• linear orders

• There are ∀∃∀ sentences true in some computable A, but not in ΠCA
(for some C).



• (Feferman, Scott and Tennenbaum; Lerman)

There is a ∀∃∀ sentence (involving Kleene’s T predicate), which is true

in N , the standard model of arithmetic, but not in ΠCN .

• Proof sketch.

Let Pe be the e-th Turing machine program.

In Kleene’s predicate T (e, x, z), e refers to Pe, x is the input, and z

codes the output and the number s of computation steps.

Consider the sentence:

(∀x)(∃s)(∀e ≤ x)[Pe(x) ↓⇒ Pe,≤s(x) ↓]



Cohesive powers and their isomorphism types have been studied for:

• The field of rational numbers, (Q,+, ·, 0, 1), by Dimitrov, Harizanov,

R. Miller and J. Mourad

• Linear orders by Dimitrov, Harizanov, Morozov, Shafer, A. Soskova

and Vatev

• Structures with an equivalence relation, certain graphs, and function

structures (A, f) for various unary functions by Harizanov and

Srinivasan



Cohesive powers of linear orders

• We use + for the sum and × for the lexicographical product of

two linear orders.

• We can show that for N, we have ΠCN ∼= N+ (Q× Z).

• Let L be a computable dense linear order without endpoints, say Q.

Then ΠCL ∼= L.

• Proof. The first-order theory of dense linear orders without endpoints

is ∀∃-axiomatizable and countably categorical (has only one countable

model, up to isomorphism).

ΠCL is countable, so ΠCL ∼= L.



• Assume that L,L0,L1 are computable linear orders, and Lrev is the

reverse of L.

• ΠC (L0 + L1) ∼= ΠCL0 + ΠCL1

ΠC (L0 × L1) ∼= ΠCL0 × ΠCL1

ΠCLrev ∼= (ΠCL)rev

• For example,

ΠCNrev ∼= (ΠCN)rev ∼= (N+ (Q× Z))rev ∼= (Q× Z) + Nrev

• Similarly,

ΠCZ ∼= ΠC(Nrev + N) ∼= Q× Z



When the successor function is computable

• Let A be a computable linear order of order type ω, with

a computable successor function. Then for every cohesive set C,

we have ΠCA ∼= N + (Q× Z).

A is computably isomorphic to the standard model N.

• Having a computable successor function is not necessary

for this order type of an effective ultrapower.

• There is a computable linear order A of order type ω, with

a non-computable successor function, such that for every

cohesive C, we have ΠCA ∼= N + (Q× Z).



When ΠCL � N+ (Q× Z)

• Let C be a cohesive set. There is a computable linear order L of order

type ω such ΠCL and N + (Q× Z) are not elementarily equivalent.

• Proof sketch

Construct a computable linear order L = (X,<L) of order type ω.

Assure that if ϕ is a partial computable function such that

[id] <ΠCL
[ϕ], then [ϕ] is not the <ΠCL

-immediate successor of [id].



• It follows that ΠCL and N+ (Q× Z) are not elementarily equivalent

because every element of N + (Q × Z) has an immediate successor,

but [id] ∈ ΠCL does not have an immediate successor.

• The sentence σ that states that every element has an immediate

successor is a ∀∃∀-sentence. Then for the computable linear order L
of type ω, constructed above, we have L � σ but ΠCL � ¬σ.



When cohesive sets have computably enumerable complements

• A set M ⊆ ω is maximal if M is computably enumerable and its comple-
ment M = C is cohesive.

Equivalently, M is computably enumerable, M is infinite, and for every
computably enumerable set W with M ⊆W ⊆ ω, either ω−W or W−M
is finite.

• For every [ϕ] ∈ ΠCA, there is a (total) computable function f
such that [f ] = [ϕ].

• Proof. Define f̂(n) =

{
ϕ(n) if ϕ(n) ↓ first,

0 if n is enumerated into M first.

f̂(n) is defined for all but finitely many n.



• Fix C to be a co-maximal set.

• There is a computable linear order L of order type ω such that

ΠCL ∼= N+ Q.

• There is a countable set of computable linear orders of order type ω, the

effective ultrapowers of which are pairwise non-elementarily equivalent.

• It is possible for non-elementarily equivalent computable linear orders to

have isomorphic effective ultrapowers.



• Let X be a non-empty, at most countable set of order types.

Let |X | be the size of X .

• The shuffle sh(X ) is obtained by densely coloring Q with |X | many colors,

assigning to each order type in X a distinct color and replacing each q ∈ Q
with the order type corresponding to the color of q.

• Let C be a co-maximal set.

• Let k0, ..., kn be positive natural numbers, and k0, ...,kn the

corresponding ordered sets.

k is 0 < 1 < · · · < k − 1



• There is a computable linear orderM of order type ω such that ΠCM has

order type ω + sh(k0, ...,kn).

• Let X be a Π0
2 or Σ0

2 (possibly infinite) set of finite non-empty order types.

Then there is a computable linear order L of order type ω such that ΠCL
has order type ω + sh(X ∪ {N+ (Q× Z) + Nrev}).



THANK YOU!
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(joint work with Rumen Dimitrov, Andrei Morozov, Paul Shafer,
Alexandra Soskova and Stefan Vatev)

• Fundamental Theorem for ΠCAi.

Let (Ai)i∈ω be a sequence of uniformly n-decidable structures, and
let C be a cohesive set.

(1) Let α(x1, . . . , xm) be a Σ0
n+2 formula. Then

ΠCAi � α([ϕ1], . . . , [ϕm]) ⇒ C ⊆∗ {i : Ai � α(ϕ1(i), . . . , ϕm(i))}

(2) The converse holds for a Π0
n+2 formula.

(3) The equivalence holds for a ∆0
n+2 formula.

• Say that a formula is ∆0
k if it is logically equivalent to both a Σ0

k
formula and a Π0

k formula.



• If A is a decidable structure, then A and ΠCA are elementarily

equivalent.

• Let A be an n-decidable structure.

Then A and ΠCA satisfy the same ∆0
n+3 sentences.

If σ is a Σ0
n+3 sentence, then A |= σ ⇒ ΠCA |= σ.


