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Standard models

A nonstandard model of a theory is a model that is not isomorphic
to the intended, standard model.

For example, the standard model of Peano arithmetic, N' = (w, +,-,0, 1),
consists of the set w = {0,1,2,3,...} with operations of addition +
and multiplication -, and constants O and 1.

The standard order of natural numbers is N = (w, <).

Complete number theory is the set of all first-order sentences (with
any number of quantifiers) which are true in the standard model of
arithmetic.



Ultrapower construction

Ultrapower constructions produce nonstandard models of theories.

Let 4 be a countable structure with the domain A.

An ultrafilter U is a certain set of large subsets of w.

An ultrapower is a direct product of countably infinitely many copies
of A modulo =g, in symbols B = [[;; A, with the domain B.

The elements of B are equivalence classes of infinite sequences f of

elements in A : (f(0), f(1), f(2),...).



e The equivalence class of f is denoted by [f].

[f1=1lgl iff {i: f(i) =9g())} €U

o In[[yN,[id] =[(0,1,2,3,...)] is a new, nonstandard number.

e [[;7 A is typically uncountable. The existence of nontrivial U's uses
Zorn's Lemma.

e [[;7 A has the same first-order theory as A.

We say they are elementarily equivalent.



Algorithmic (effective) ultrapower

A structure is computable.

Ultrafilters are replaced by infinite sets previously studied in
computability theory, which are indecomposable with respect to
computably enumerable sets.

The elements of the product are equivalence classes of partial
computable functions.

Hence an effective ultrapower of a structure is a countable structure.



Computable structures

e A set is computable if there is a decision algorithm that recognizes its
elements and non-elements.

e A countable structure A with finitely many operations and relations
iIs computable if its domain is computable and its operations and re-
lations are computable.

e Examples of computable structures: N

The ordered set of natural numbers, N (of order type w)
The ordered set integers, Z

The ordered set of rational numbers, QQ

The additive group of integers, (Z,+,0)

The field of rational numbers, (Q,+,-,0,1)



e Example of a non-computable structure
Let H be a non-computable set, say the halting set.

Define a linear order ({0,1,2,...}, <) isomorphic to N
(of order type w):

2n <2n+1ifne H
2n+1<2nifnd¢ H

2n, 2n+1<2n+2,2n+ 3

0,1<2,3<45<---
e If this order were computable, then H would be computable.

e Tennenbaum’s Theorem
There is no computable nonstandard model of Peano arithmetic.



Computably enumerable sets

e A nonempty set W of natural numbers is computably enumerable if
there is an algorithm that generates it by enumerating (i.e., listing) its
elements: W = {wqg, w1, wo, ...}

o If W is finite or its elements can be algorithmically enumerated in
strictly increasing order, then W is computable.

e There are many non-computable computably enumerable sets.



Partial computable functions

o Let Py, Py, ..., Pe, ... be an algorithmic enumeration (given by
systematic listing) of all Turing machine programs.

e Turing machine program P, computes a partial computable (possibly
total, thus computable) function ¢,

on input z, it halts and outputs its value, in symbols ¢ () {,
when = € dom(p,), or it computes forever, in symbols ¢ () T,
when x & dom(p,).

e Also, we have an algorithmic enumeration of all computably
enumerable sets:

WO, W]_, ceey We,



Cohesive Sets

e A set C' of natural numbers is cohesive if C' is infinite and for every
computably enumerable set W, either W N C or W N C is finite.

Hence:

W N Cis infinite = C C* W
W N C is infinite = C C* W

C* stands for inclusion of all but finitely many elements

e Every infinite set of natural numbers has a cohesive subset.



Effective (Cohesive) Ultrapowers

e Let A be a computable structure with domain A,
and let C be a cohesive set of natural numbers.

The cohesive ultrapower of A over C, in symbols B = N-A,
has the domain (D mod =) where

D ={¢|p:w— Ais partial computable and C C* dom(y)}.

For v,y € D, define
p=c iff CC"{i:p(i)l=1y() 1}

The equivalence class of ¢ is denoted by [¢].



e If F'is an n-ary operation (function) symbol, then

FB([p1l, - -, [enl) = [¢],

where for every 1 € w,
o) = FA(p1(), .., (D)),

equal as partial functions.

e If R is an m-ary relation symbol, then

RE([p1l, -, lem]) iff CC*{i € w: RAp1(0)s- -\ om(i))}

e If c is a constant symbol, then B is the equivalence class of

the computable function with constant value cA.



Canonical embedding of A into MoA: a — [04],
where 0, = (a,a,...).

For a finite structure A, we have Mo A = A.

For an infinite computable structure A, the effective ultrapower
[M~.A and A do not necessarily have the same theory.

If A and B are computably isomorphic, then Mo A = Mo B.



Preservation of satisfaction

e Dimitrov's Theorem
(i) If o is a V3 (or 3V) sentence, then

NoAEo iff AFo

(ii) If o is a 3Vd sentence, then

if AFo then [l AFOo

e If A has more decidability, then more satisfaction is preserved.



e If a computable structure A is from one of the following classes, then

so is its effective ultrapower N~.A:

o fields

e structures with an equivalence relation

e graphs

e structures with a single one-to-one function (directed graphs)
e other directed graphs obtained from functions

e linear orders

e There are V3V sentences true in some computable A, but not in .4
(for some C').



e (Feferman, Scott and Tennenbaum; Lerman)

There is a V3V sentence (involving Kleene's T" predicate), which is true
in V, the standard model of arithmetic, but not in M-N.

e Proof sketch.
Let P. be the e-th Turing machine program.

In Kleene's predicate T'(e, x, z), e refers to Pe, x is the input, and z
codes the output and the number s of computation steps.

Consider the sentence:

(Vz)(3s)(Ve < x)[Pe(z) = P <s(x) {]



Cohesive powers and their isomorphism types have been studied for:

e The field of rational numbers, (Q,+,,0,1), by Dimitrov, Harizanov,
R. Miller and J. Mourad

e Linear orders by Dimitrov, Harizanov, Morozov, Shafer, A. Soskova
and Vatev

e Structures with an equivalence relation, certain graphs, and function
structures (A, f) for various unary functions by Harizanov and
Srinivasan



Cohesive powers of linear orders

We use + for the sum and X for the lexicographical product of
two linear orders.

We can show that for N, we have MoN = N 4 (Q x Z).

Let £ be a computable dense linear order without endpoints, say Q.
Then N L = L.

Proof. The first-order theory of dense linear orders without endpoints
is V3-axiomatizable and countably categorical (has only one countable
model, up to isomorphism).

[1-L is countable, so N L = L.



Assume that L, Ly, £1 are computable linear orders, and L£"¢Y is the
reverse of L.

No (Lo + £1) ENgLy + Nely
Mo ('CO X El) =Nl x MLy
Mo Lrev = (l—lcﬁ)rev

For example,

NNV =2 (MEN)eY 2 (N + (Q x Z))"Y =2 (Q x Z) + N™ev

Similarly,
NoZ = Ne(N™Y +N) = Q x Z



When the successor function is computable

e Let A be a computable linear order of order type w, with
a computable successor function. Then for every cohesive set C,

we have NN A= N + (Q X Z).

A is computably isomorphic to the standard model N.

e Having a computable successor function is not necessary
for this order type of an effective ultrapower.

e There is a computable linear order A of order type w, with
a non-computable successor function, such that for every
cohesive C, we have MM A =N + (Q x Z).



When ML 2N + (Q x Z)

e Let (' be a cohesive set. There is a computable linear order L of order
type w such ML and N + (Q x Z) are not elementarily equivalent.

e Proof sketch
Construct a computable linear order £ = (X, <) of order type w.
Assure that if ¢ is a partial computable function such that

[id] <n.c [¢], then [¢] is not the <|_|C£-immediate successor of [id].



e It follows that ML and N 4 (Q X Z) are not elementarily equivalent
because every element of N 4+ (Q x Z) has an immediate successor,

but [id] € ML does not have an immediate successor.

e The sentence o that states that every element has an immediate
successor is a VdV-sentence. Then for the computable linear order L

of type w, constructed above, we have L F o but oL F —o.



When cohesive sets have computably enumerable complements

e Aset M C wis maximal if M is computably enumerable and its comple-
ment M = C is cohesive.

Equivalently, M is computably enumerable, M is infinite, and for every
computably enumerable set W with M C W C w, eitherw—W or W —M
is finite.

e For every [¢] € MM A, there is a (total) computable function f
such that [f] = [¢].

= | en) if o(n) | first,
e Proof. Define f(n) = { 0  if nis enumerated into M first.

f(n) is defined for all but finitely many n.



Fix C' to be a co-maximal set.

There is a computable linear order £ of order type w such that

Nl 2N+ Q.

There is a countable set of computable linear orders of order type w, the
effective ultrapowers of which are pairwise non-elementarily equivalent.

It is possible for non-elementarily equivalent computable linear orders to
have isomorphic effective ultrapowers.



Let X be a non-empty, at most countable set of order types.

Let |X| be the size of X.

The shuffle sh(X) is obtained by densely coloring Q with |X’| many colors,
assigning to each order type in X a distinct color and replacing each ¢ € Q
with the order type corresponding to the color of gq.

Let C' be a co-maximal set.

Let kg, ..., kn be positive natural numbers, and kg, ..., ky, the
corresponding ordered sets.

kisO<1l<.---<k-1



e Thereis a computable linear order M of order type w such that oM has
order type w + sh(ko, ..., kn).

o Let X bea I‘Ig or Zg (possibly infinite) set of finite non-empty order types.
Then there is a computable linear order £ of order type w such that 1oL
has order type w + sh(X U{N + (Q x Z) 4+ N"¢V}).



THANK YOU!
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(joint work with Rumen Dimitrov, Andrei Morozov, Paul Shafer,
Alexandra Soskova and Stefan Vatev)

e Fundamental Theorem for N~ A;.

Let (A;);c, be a sequence of uniformly n-decidable structures, and
let C' be a cohesive set.

(1) Let a(x1,...,%m) be a X0 no formula. Then
NoAi Fa(lei]s - leml) = C S {i: A F aler(i), - -, om(9))}
(2) The converse holds for a M9 no formula.

(3) The equivalence holds for a A no formula.

e Say that a formula is A if it is logically equivalent to both a 22
formula and a HO formula



e If A is a decidable structure, then A and lN-.A are elementarily

equivalent.

e Let A be an n-decidable structure.
Then A and I A satisfy the same A2+3 sentences.

If o is a Z%+3 sentence, then A =0 = N A = o.



