
Proofs-as-programs: from logic to AI

Silvia Ghilezan

University of Novi Sad
Mathematical Institute SASA, Serbia

LAP 2024
IUC, Dubrovnik

23-27 September 2024

1 / 1

correspondence

logic computation

proofs – terms

formulae – types

rules – reductions

2 / 40

Curry - Howard correspondence

INTUITIONISTIC LOGIC COMPUTATION

Axiomatic system Combinatory Logic
Natural Deduction λ-calculus
Sequent system sequent-like λ-calculi

◮ 1950s Curry
◮ 1968 (1980) Howard - formulae-as-types
◮ 1970s Lambek - CCC Cartesian Closed Categories
◮ 1970s de Bruijn - AUTOMATH
◮ 1970s Martin-Löf - Type Theory

3 / 40

Journey

LOGIC COMPUTATION

intuitionistic λ-calculus
combinatory logic

second-order polymorphism

predicate λ cube

classical λµ-calculi

??? intersection types

communication process calculi

??? federated (machine) learning ???
4 / 40

Curry - Howard correspondence

INTUITIONISTIC LOGIC COMPUTATION

Axiomatic system Combinatory Logic
Natural Deduction λ-calculus
Sequent system sequent-like λ-calculi

39 / 40

Roadmap

1 Background: Models of computation, Logical systems

2 Logic and Computation

3 Communication and Computation

4 Federated Learning (AI) and Computation

2 / 24

Roadmap

1 Background: Models of computation, Logical systems

2 Logic and Computation

3 Communication and Computation

4 Federated Learning (AI) and Computation

3 / 24

Models of computation

Expressiveness - Effective computability (mid 1930s)

(Turing) Equivalence of Turing machines and �-calculus

(Kleene) Equivalence of Recursive functions and �-calculus

(Curry) Equivalence of Combinatory Logic and �-calculus

4 / 24

�-calculus - theory of functions

Syntax
M ::= x | c | (MM) | (�x .M)

Reduction rules
↵-reduction:

�x .M �!↵ �y .M[x := y], y /2 FV (M)

�-reduction:
(�x .M)N �!� M[x := N]

Example
(�x .x)5 ! 5 identity funtion
(�x .x2 + 1)3 ! 32 + 1 = 10

5 / 24

�-calculus - theory of functions

Syntax
M ::= x | c | (MM) | (�x .M)

Reduction rules
↵-reduction:

�x .M �!↵ �y .M[x := y], y /2 FV (M)

�-reduction:
(�x .M)N �!� M[x := N]

Example
(�x .x)5 ! 5 identity funtion
(�x .x2 + 1)3 ! 32 + 1 = 10

5 / 24

Logical systems

LOGIC

Axiomatic system Hilbert style
Natural Deduction Gentzen, Prawitz
Sequent system Gentzen

6 / 24

Roadmap

1 Background: Models of computation, Logical systems

2 Logic and Computation

3 Communication and Computation

4 Federated Learning (AI) and Computation

7 / 24

Curry - Howard correspondence

INTUITIONISTIC LOGIC COMPUTATION

Axiomatic system Combinatory Logic
Natural Deduction λ-calculus
Sequent system sequent-like λ-calculi

39 / 40

Intuitionistic logic vs Computation

` A , ` M : A

formulae –as– types

proofs – as – terms
proofs –as– programs

proof normalisation –as– term reduction
cut elimination –as– term reduction

BHK - Brouwer, Heyting, Kolmogorov interpretation of logical
connectives is formalized by the Curry-Howard correspondence

3
P(A ! B) are the maps from P(A) into P(B)

Pierce’s law not inhabited 7
9 / 24

Proofs-as-programs for classical logic

CLASSICAL LOGIC COMPUTATION

Axiomatic system C calculus
Natural Deduction �µ-calculus
Sequent system �µeµ-calculus

Griffin, Felleisen, Filinsky 1990s (axiomatic)
C: formulae-as-types notion of control, call/cc

Parigot 1992 (natural deduction)
�µ: algorithmic interpretation of classical logic

Curien, Herbelin 2000 (sequent)
�µeµ: symmetric lambda calculus - duality of computation

10 / 24

Pierce’s law is inhabited 3
�x .µ↵. < x | (�y .µ�. < y | ↵ >) • ↵ >: ((A ! B) ! A) ! A

11 / 24

Intuitionistic logics extended

PROP proposition logic
PROP2 second-order proposition logic
PROP! weakly higher-order proposition logic
PROP! higher-order proposition logic
PRED predicate logic
PRED2 second-order predicate logic
PRED! weakly higher-order predicate logic
PRED! higher-order predicate logic

12 / 24

Intuitionistic logics extended - Computation

PROP proposition logic � !
PROP2 second-order proposition logic �2 (F)
PROP! weakly higher-order proposition logic �!
PROP! higher-order proposition logic �! (F!)
PRED predicate logic �P

PRED2 second-order predicate logic �P2
PRED! weakly higher-order predicate logic �P!
PRED! higher-order predicate logic �P! (CC)

12 / 24

PROP!/�! PRED!/�P!

PROP2/�2 PRED2/�P2

PROP!/�! PRED!/�P!

PROP/�! PRED/�P

(a) Logic and Lambda cube

` A (LOGIC) if and only if ` M : A (�LOGIC)
13 / 24

Mobile User

Good properties of the cube

Uniqueness of types 3

Confluence (Church-Rosser property) 3

Type preservation under reduction (Subject Reduction) 3

Termination (Strong Normalisation) 3
Expressivness

13 / 24

PROP!/�! PRED!/�P!

PROP2/�2 PRED2/�P2

PROP!/�! PRED!/�P!

PROP/�! PRED/�P

(a) Logic and Lambda cube

` A (LOGIC) if and only if ` M : A (�LOGIC)
14 / 24

Mobile User

Roadmap

1 Background: Models of computation, Logical systems

2 Logic and Computation

3 Communication and Computation

4 Federated Learning (AI) and Computation

14 / 24

Proofs-as-programs paradigm extended

COMPUTATION COMMUNICATION

determinism non-determinism
term process
sequential composition concurrency
computational behaviour interactional behaviour
� calculus ⇡ calculus, CCS, CSP

formulae – as – types
proofs – as – terms

proofs – as – programs
proofs – as – processes

15 / 24

Good properties

Typed programs cannot "go wrong"

Types preservation (Subject Reduction) 3

Progress 3
Consequences

Safety = Preservation + Progress
Liveness
Deadlock freedom

16 / 24

Good properties

Typed programs cannot "go wrong"

Types preservation (Subject Reduction) 3

Progress 3
Consequences

Safety = Preservation + Progress
Liveness
Deadlock freedom

16 / 24

Roadmap

1 Background: Models of computation, Logical systems

2 Logic and Computation

3 Communication and Computation

4 Federated Learning (AI) and Computation

17 / 24

Federated Learning + Formal Verification

Federated learning (FL) a machine learning setting where clients
keep training data decentralised and collaboratively train a model

Formal verification a process of mathematically checking that
the behaviour of a system satisfies a given property
proofs-as-programs & proofs-as-processes

Sounds great 3
but there is zero previous work to build upon 7
Hence, we need to take small steps to find

a common language of the two working communities ??
18 / 24

Work in progress

Python Testbed for Federated Learning Algorithms (PTB-FLA)
under development at UNS

Communicating Sequential Processes calculus (CSP)
to model PTB-FLA

Process Analysis Toolkit model checker (PAT)
to verify properties of the CSP models

19 / 24

PTB-FLA

Python Testbed for Federated Learning Algorithms (PTB-FLA)

Developed with the primary intention to be used as a framework
for developing federated learning algorithms

It is a work in progress, and it supports both centralised and
decentralised algorithms

the generic centralised one-shot FLA execution
the generic decentralised one-shot FLA execution

M. Popovic, M. Popovic, I. Kastelan, M. Djukic, S. G.: A simple python
testbed for federated learning algorithms. In: ZINC 2023. pp. 148-153
(2023).

20 / 24

Centralised - star topology

The algorithm goes in 3
phases where:

local data is the local
machine learning
model
private data is
training data

At this point our focus
was on the
communication pattern:

broadcasting
receiving from
clients in any order!

ana1 ai.

. . .

. . .

Phase 1:
Server broadcasts
its local data

Phase 2:
Server receives
clients’ updates

Clients call their
callback function

Phase 3:
Server calls its
callback function

21 / 24

Formal verification of FL protocols

Current approach:
to use CSP (Communicating Sequential Processes) calculus to
model (bottom up)

the centralised (star topology) FL protocol
the decentralised (clique topology) FL protocol

to use PAT (Process Analysis Toolkit) model checker to prove
deadlock freedom and
termination

of the two CSP models (top down)

Ongoing research:
to automatise the translation of the Python code into the CSP
model

22 / 24

Reference

I. Prokić, S. G., S. Kašterović, M. Popovic, M. Popovic, I. Kaštelan
Correct orchestration of Federated Learning generic algorithms:
formalisation and verification in CSP
ECBS 2023 - Engineering of Computer-Based Systems
Lecture Notes in Computer Science 14390, pp 274–288 (2023)

On arXiv

23 / 24

6G-

NTN

PROJECT-

TARDIS.EU

Trustworthy and
Resilient

Decentralised
Intelligence for

Edge
Systems

www.project-tardis.eu EU’s Horizont Europe

24 / 24

Journey
LOGIC COMPUTATION

intuitionistic λ-calculus
combinatory logic

second-order polymorphism

predicate λ cube

classical λµ-calculi

??? intersection types

communication process calculi

??? federated (machine) learning ???
4 / 40

	Background: Models of computation, Logical systems
	Logic and Computation
	Communication and Computation
	Federated Learning (AI) and Computation

