
Introduction Timed MSR Sytems Resilience Complexity Implementation

Time-Bounded Resilience

Tajana Ban Kirigin, Jesse Comer, Max Kanovich,
Andre Scedrov, and Carolyn Talcott

LAP 2024

Introduction Timed MSR Sytems Resilience Complexity Implementation

Resilience

Introduction Timed MSR Sytems Resilience Complexity Implementation

Resilience

What is resilience?

”[Resilience emphasizes] the ability of a system to adapt and respond to change (both
environmental and internal).” Bloomfield et. al., [2].

Why resilience?

”We must recognize the trade-off between efficiency and resilience. It is time to
develop the discipline of resilient algorithms.” Moshe Vardi, [3].

Introduction Timed MSR Sytems Resilience Complexity Implementation

Overview

• Timed multiset rewriting (MSR) systems are an expressive formalism for modeling
planning scenarios with discrete time.

• Expository example:

1. Example: a researcher is planning travel to a conference.

2. The researcher wants a resilient travel plan which achieves his goal despite issues
such as flight delays.

• We will formalize resilience for planning scenarios based on timed MSR systems.

• At the end, we will discuss our Maude implementation of this example.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Resilience via Timed Multiset Rewriting Systems

• We want to model a planning scenario.

• High level idea:

1. We represent states of the scenario via configurations.

2. Rewrite rules, representing “actions” in the scenario, modify configurations.
• System rules represent actions of our “protagonist.”
• Update rules can be seen as actions of an “adversary.”

3. Planning corresponds to finding compliant traces to a goal configuration.

4. n-Resilience is a decision problem: can we find a compliant trace to a goal
configuration which is resilient to n adversarial disruptions?

• There is an intuitive game-theoretic interpretation to this formalism: its complexity
lands naturally within the polynomial hierarchy (PH).

Introduction Timed MSR Sytems Resilience Complexity Implementation

First-order Formulas and Facts

• We fix a first-order alphabet Σ.

• Atomic formulas are of the form R(t1, . . . , tn), where

1. R is an n-ary relation symbol in Σ, and

2. the ti are Σ-terms which may contain variables.

• Facts are atomic formulas without variables.

• Timestamped atomic formulas are of the form F@(T + D), where F is an atomic
formula, T is a time variable, and D is a natural number.

• Timestamped facts are of the form F@t, where F is a fact and t is a natural
number.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Configurations

• Configurations are multisets of timestamped facts.

• The global time of a configuration is given by the timestamp of a (unique)
timestamped fact of the form Time@t.

{Time@(3d 14:42), Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00), Flight2(FRA,DBV)@(3d 15:25)}

• Note – configurations contain only ground terms (i.e., no variables).

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rewrite Rules

• Configurations are modified by rewrite rules.

• There is a special rule Tick which increments the global time by one:

Time@T −→ Time@(T + 1)

• All other rewrite rules are instantaneous, unable to modify the global time.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Instantaneous Rules

• Instantaneous rules have the form

Precondition︷ ︸︸ ︷
Time@T ,W,F1@T1, . . . ,Fn@Tn | C

−→ Time@T ,W,Q1@(T + D1), . . . ,Qm@(T + Dm)︸ ︷︷ ︸
Postcondition

W — multiset of timestamped atomic formulas

(the side condition)

Fi@Ti & Qj@Tj — timestamped atomic formulas

C — a set of time constraints of the form

T1 > T2 ± N or T1 = T2 ± N

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

Modeling “taking a (two-hour) flight” with an instantaneous rule:

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

Not applicable! T ̸= T1.

After 43 applications of Tick:

{Time@(3d 13:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

Modeling “taking a (two-hour) flight” with an instantaneous rule:

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

Not applicable! T ̸= T1.

After 43 applications of Tick:

{Time@(3d 13:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

Modeling “taking a (two-hour) flight” with an instantaneous rule:

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

Not applicable! T ̸= T1.

After 43 applications of Tick:

{Time@(3d 13:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

Modeling “taking a (two-hour) flight” with an instantaneous rule:

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

Not applicable! T ̸= T1.

After 43 applications of Tick:

{Time@(3d 13:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

{Time@(3d 15:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

x1 7→ FRA

x2 7→ DBV

T 7→ 3d 15 : 25

T1 7→ 3d 15 : 25

T2 7→ 3d 14 : 05

Rule instance :

Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(FRA, airport)@3d 14 : 05,

−→ Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(DBV, airport)@(3d 15 : 25 + 120)

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

{Time@(3d 15:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

x1 7→ FRA

x2 7→ DBV

T 7→ 3d 15 : 25

T1 7→ 3d 15 : 25

T2 7→ 3d 14 : 05

Rule instance :

Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(FRA, airport)@3d 14 : 05,

−→ Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(DBV, airport)@(3d 15 : 25 + 120)

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

{Time@(3d 15:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

x1 7→ FRA

x2 7→ DBV

T 7→ 3d 15 : 25

T1 7→ 3d 15 : 25

T2 7→ 3d 14 : 05

Rule instance :

Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(FRA, airport)@3d 14 : 05,

−→ Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(DBV, airport)@(3d 15 : 25 + 120)

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Rule Application: Travel Example

{Time@(3d 15:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

x1 7→ FRA

x2 7→ DBV

T 7→ 3d 15 : 25

T1 7→ 3d 15 : 25

T2 7→ 3d 14 : 05

Rule instance :

Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(FRA, airport)@3d 14 : 05,

−→ Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(DBV, airport)@(3d 15 : 25 + 120)

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Timed MSR Systems

• A timed MSR system is a set R containing the Tick rule and some finite number
of instantaneous rules.

• A trace of R rules from an “initial” configuration S0 is a sequence S0 −→ · · · −→ Sn

of configurations, where some instance of a rule r ∈ R applied to Si yields Si+1.

• A goal configuration specification designates conditions for a configuration to be a
goal configuration. It contains pairs of the form ⟨S, C⟩, where S is a multiset of
timestamped atomic formulas and C is a set of time contraints.

• For example:
{⟨{Attended(main, yes)@T1}, ∅⟩}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Critical Configurations and Compliance

• A critical configuration specification describes when a configuration is “critical.”

{⟨Time@T ,Attended(main, no)@T1,Event(main)@T2}, {T > T2}⟩}

• A trace is compliant if it does not contain any critical configurations.

• Critical configurations can be thought of as safety violations, while compliant
traces are analogous to safe traces.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Toward Resilience

• To model resilience, we need a notion of actions which are under the control of the
system, and disruptions which are imposed on the system.

• We model the former via system rules, and the latter via update rules.

• Example (update rule) — A flight is delayed by 30 minutes:

Time@T ,FlightD(x1, x2)@T1 | {T = T1} −→ Time@T ,FlightD(x1, x2)@(T + 30).

Definition (Planning Scenario, [1])

If R and E are sets of system and update rules, GS and CS are a goal and critical
configuration specifications, and S0 is an initial configuration, then the tuple
(R,GS, CS, E ,S0) is a planning scenario.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Simplifying Assumptions

For our complexity results, we assume

1. Bounded depth of function applications in terms in facts occurring in traces;

2. η-simplicity: there is a fixed bound η on the number of (first-order and time)
variables allowed to occur in a pair ⟨Si , Ci ⟩ in CS; and

3. All planning scenarios are progressing.

Definition (Progressing Planning Scenarios (PPSs))

A planning scenario is progressing if, for each rule r ∈ R ∪ E ,
1. r is balanced (i.e., the precondition and postcondition have equal cardinality),

2. r consumes only facts with timestamps in the past or at the current time, and

3. r creates at least one fact with timestamp greater than the global time.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Formalizing Resilience

Definition (The (n, a, b)-resilience problem (by recursion on n))

Let a ∈ Z+ and b ∈ N. Inputs: planning scenarios A = (R,GS, CS, E ,S0).
A trace is (0, a, b)-resilient with respect to A if it is a compliant trace of R rules
from S0 ∋ Time@t0 to a goal configuration and contains at most a+ b applications of
the Tick rule. For n > 0, a trace τ is (n, a, b)-resilient with respect to A if

1. τ is (0, a, b)-resilient with respect to A, and

2. for any system or goal update rule r ∈ E applied to a configuration Si in τ , with
Si −→r S ′

i+1, where global time ti in Si satisfies di = ti − t0 ≤ a, there exists a
reaction trace τ ′ of R rules from S ′

i+1 to a goal configuration S ′ such that τ ′ is
(n − 1, a− di , b)-resilient with respect to A′ = (R,GS, CS, E ,S ′

i+1).

A planning scenario A = (R,GS, CS, E ,S0) is (n, a, b)-resilient if an (n, a, b)-resilient
trace with respect to A exists. The (n, a, b)-resilience problem is to determine if a
given planning scenario A is (n, a, b)-resilient.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Formalizing Resilience

τ : S0 . . . Si . . . Sk

τ ′ : S ′
i+1

. . . S ′

r

di (≤ a)

≤ a− di + b

Figure: An (n, a, b)-resilient trace τ and an (n − 1, a− di , b)-resilient reaction trace τ ′. The
horizontal arrows correspond to system rule applications, while the downward-facing arrow
represents an update rule application. The configurations Sk and S ′ on the far right are goal
configurations.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Complexity Results

Definition

A decision problem is in ΣP
n (for n odd) if and only if there exists a polynomial-time

algorithm M such that an input x is a yes instance of the problem if and only if

∃u1∀u2∃u3 . . . ∀un−1∃un M(x , u1, . . . , un) accepts,

where the ui are polynomially-bounded in the size of x .

In our case, the existentially-quantified variables represent compliant goal traces, while
the universally-quantified variables represent update rule applications.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Complexity Results

Theorem

The (n, a, b)-resilience problem for η-simple PPSs with traces containing only facts of
bounded size is ΣP

2n+1-complete.

Upper bound — by the quantifier-alternation characterization of ΣP
2n+1.

Lower bound — by a reduction from ΣP
2n+1-SAT.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Travel Planning in Maude

• The goal is to attend a set of events in different places, with some required and some
optional.

• There is a knowledge base of flights to choose from.

• Updates include

1. flight delay, cancellation, or diversion; and

2. change of event start or duration.

• A critical configuration is one where the current time is later than the start time of a
required event and the event has not been attended.

Introduction Timed MSR Sytems Resilience Complexity Implementation

RWL vs MSR

• System state is represented by data structures rather than facts.

• There is just one time, the current time, represented as an element of the state

• Timers, delays, durations control the passing of time.

• Here, the passage of time is modeled using event/action duration:

1. taking a flight takes time, and

2. searching for flight is instantaneous.

• A variant on the usual RTMaude tick and instantaneous rules.

• An optimization of the uniform one time unit ticks model.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Some details — state representation

tc(dateTime,city,location,events) — planning
tc(dateTime,city,location,events, event, flightLists) —traveling

• Maude Example
dateTime = dt(yd(23, 247), hm(12, 42)),

city = FRA, location = airport

event = ev("id215", DBV, center, yd(23,249), hm(14,0), hm(120,0),

false) attendance optional

flightList(s) = fi(fl(FRA,DBV,"id14",hm(15,25),hm(2,0))) –abstract flight
dt(yd(23,247),hm(15,25)), — departure date time
dt(yd(23,247),hm(17,25)) — arrival date time

• MSR example

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main, id215)@(5d 12:00),Flight2(id14,FRA,DBV)@(3d 15:25)}

Introduction Timed MSR Sytems Resilience Complexity Implementation

Some details — rules

• plan – find flight lists from to next event location

• flt – take flight duration = arrival - current time

• event – attend event duration = event dur + time to airport

• fltDigress — apply a flight update

• replan – when current time is too late for event or flight

Introduction Timed MSR Sytems Resilience Complexity Implementation

Checking n,a,b-resilience — input

initial state — a planning state with the full set of events to attend
tc(dateTime,city,location,events)
critical state – tcCrit(....)
goal state – tc(dateTime,city,location,mtE) – a terminal state

Introduction Timed MSR Sytems Resilience Complexity Implementation

Checking (n, a, b)-resilience — search algorithm

• Search algorithm

1. Use Maude search to find a compliant trace. If n = 0 return true.

2. Step through this trace. At each point make a branch for each enabled update,
decrement n and go to 1.

• How to do (2):

1. Convert the trace found by Maude search into a sequence of rule instances.

2. For each prefix, a maude strategy, and each update, append the update rule and
use srewrite to find all updates for this point in the trace.

Introduction Timed MSR Sytems Resilience Complexity Implementation

Experimental results

N: 1 2 3

2ev R? time R? time R? time

247 N 86ms - - - -
246 Y 81ms Y 147ms N 7476ms

3ev R? time R? time R? time

247 N 1400ms - - - -
246 Y 325ms Y 685ms NF -

(a) flight/system update rules

N: 1 2 3

2ev R? time R? time R? time

247 Y 78ms N 77ms - -
246 Y 98ms N 34800ms - -

3ev R? time R? time R? time

247 Y 143ms N 2627ms - -
246 Y 220ms Y 633ms Y 2634ms

(b) event/goal update rules

Figure: Summary of (n, a, b)-resilience experiments

Introduction Timed MSR Sytems Resilience Complexity Implementation

Summary

We have:

1. Described timed MSR systems for modeling planning scenarios.

2. Given a formal definition of resilience and analyzed its complexity.

3. Implemented this formalism in Maude and run experiments on resilience of our
travel example.

Questions?

Introduction Timed MSR Sytems Resilience Complexity Implementation

References

M. A. Alturki, T. Ban Kirigin, M. Kanovich, V. Nigam, A. Scedrov, and
C. Talcott.
On the formalization and computational complexity of resilience problems for
cyber-physical systems.
In Theoretical Aspects of Computing–ICTAC 2022: 19th International Colloquium,
Tbilisi, Georgia, September 27–29, 2022, Proceedings, pages 96–113. Springer,
2022.

R. Bloomfield, G. Fletcher, H. Khlaaf, P. Ryan, S. Kinoshita, Y. Kinoshit,
M. Takeyama, Y. Matsubara, P. Popov, K. Imai, et al.
Towards identifying and closing gaps in assurance of autonomous road vehicles–a
collection of technical notes part 1.
arXiv preprint arXiv:2003.00789, 2020.

M. Vardi.
Efficiency vs. resilience: What covid-19 teaches computing.
Communications of the ACM, 63(5):9–9, 2020.

	Introduction
	Timed MSR Sytems
	Resilience
	Complexity
	Implementation

