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Resilience

What is resilience?

”[Resilience emphasizes] the ability of a system to adapt and respond to change (both
environmental and internal).” Bloomfield et. al., [2].

Why resilience?

”We must recognize the trade-off between efficiency and resilience. It is time to
develop the discipline of resilient algorithms.” Moshe Vardi, [3].
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Overview

• Timed multiset rewriting (MSR) systems are an expressive formalism for modeling
planning scenarios with discrete time.

• Expository example:

1. Example: a researcher is planning travel to a conference.

2. The researcher wants a resilient travel plan which achieves his goal despite issues
such as flight delays.

• We will formalize resilience for planning scenarios based on timed MSR systems.

• At the end, we will discuss our Maude implementation of this example.
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Resilience via Timed Multiset Rewriting Systems

• We want to model a planning scenario.

• High level idea:

1. We represent states of the scenario via configurations.

2. Rewrite rules, representing “actions” in the scenario, modify configurations.
• System rules represent actions of our “protagonist.”
• Update rules can be seen as actions of an “adversary.”

3. Planning corresponds to finding compliant traces to a goal configuration.

4. n-Resilience is a decision problem: can we find a compliant trace to a goal
configuration which is resilient to n adversarial disruptions?

• There is an intuitive game-theoretic interpretation to this formalism: its complexity
lands naturally within the polynomial hierarchy (PH).
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First-order Formulas and Facts

• We fix a first-order alphabet Σ.

• Atomic formulas are of the form R(t1, . . . , tn), where

1. R is an n-ary relation symbol in Σ, and

2. the ti are Σ-terms which may contain variables.

• Facts are atomic formulas without variables.

• Timestamped atomic formulas are of the form F@(T + D), where F is an atomic
formula, T is a time variable, and D is a natural number.

• Timestamped facts are of the form F@t, where F is a fact and t is a natural
number.
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Configurations

• Configurations are multisets of timestamped facts.

• The global time of a configuration is given by the timestamp of a (unique)
timestamped fact of the form Time@t.

{Time@(3d 14:42), Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00), Flight2(FRA,DBV)@(3d 15:25)}

• Note – configurations contain only ground terms (i.e., no variables).
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Rewrite Rules

• Configurations are modified by rewrite rules.

• There is a special rule Tick which increments the global time by one:

Time@T −→ Time@(T + 1)

• All other rewrite rules are instantaneous, unable to modify the global time.
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Instantaneous Rules

• Instantaneous rules have the form

Precondition︷ ︸︸ ︷
Time@T ,W,F1@T1, . . . ,Fn@Tn | C

−→ Time@T ,W,Q1@(T + D1), . . . ,Qm@(T + Dm)︸ ︷︷ ︸
Postcondition

W — multiset of timestamped atomic formulas

(the side condition)

Fi@Ti & Qj@Tj — timestamped atomic formulas

C — a set of time constraints of the form

T1 > T2 ± N or T1 = T2 ± N
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Rule Application: Travel Example

Modeling “taking a (two-hour) flight” with an instantaneous rule:

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

Not applicable! T ̸= T1.

After 43 applications of Tick:

{Time@(3d 13:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}
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Rule Application: Travel Example

{Time@(3d 15:25),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}

Time@T ,Flight2(x1, x2)@T1,At(x1, airport)@T2, | {T = T1,T2 + 30 ≤ T}
−→ Time@T ,Flight2(x1, x2)@T1,At(x2, airport)@(T + 120),

x1 7→ FRA

x2 7→ DBV

T 7→ 3d 15 : 25

T1 7→ 3d 15 : 25

T2 7→ 3d 14 : 05

Rule instance :

Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(FRA, airport)@3d 14 : 05,

−→ Time@3d 15 : 25,Flight2(FRA,DBV)@3d 15 : 25,

At(DBV, airport)@(3d 15 : 25 + 120)

{Time@(3d 15:25),Attended(main, no)@0, At(DBV, airport)@(3d 17:25),
Event(main)@(5d 12:00),Flight2(FRA,DBV)@(3d 15:25)}
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Timed MSR Systems

• A timed MSR system is a set R containing the Tick rule and some finite number
of instantaneous rules.

• A trace of R rules from an “initial” configuration S0 is a sequence S0 −→ · · · −→ Sn

of configurations, where some instance of a rule r ∈ R applied to Si yields Si+1.

• A goal configuration specification designates conditions for a configuration to be a
goal configuration. It contains pairs of the form ⟨S, C⟩, where S is a multiset of
timestamped atomic formulas and C is a set of time contraints.

• For example:
{⟨{Attended(main, yes)@T1}, ∅⟩}
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Critical Configurations and Compliance

• A critical configuration specification describes when a configuration is “critical.”

{⟨Time@T ,Attended(main, no)@T1,Event(main)@T2}, {T > T2}⟩}

• A trace is compliant if it does not contain any critical configurations.

• Critical configurations can be thought of as safety violations, while compliant
traces are analogous to safe traces.
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Toward Resilience

• To model resilience, we need a notion of actions which are under the control of the
system, and disruptions which are imposed on the system.

• We model the former via system rules, and the latter via update rules.

• Example (update rule) — A flight is delayed by 30 minutes:

Time@T ,FlightD(x1, x2)@T1 | {T = T1} −→ Time@T ,FlightD(x1, x2)@(T + 30).

Definition (Planning Scenario, [1])

If R and E are sets of system and update rules, GS and CS are a goal and critical
configuration specifications, and S0 is an initial configuration, then the tuple
(R,GS, CS, E ,S0) is a planning scenario.
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Simplifying Assumptions

For our complexity results, we assume

1. Bounded depth of function applications in terms in facts occurring in traces;

2. η-simplicity: there is a fixed bound η on the number of (first-order and time)
variables allowed to occur in a pair ⟨Si , Ci ⟩ in CS; and

3. All planning scenarios are progressing.

Definition (Progressing Planning Scenarios (PPSs))

A planning scenario is progressing if, for each rule r ∈ R ∪ E ,
1. r is balanced (i.e., the precondition and postcondition have equal cardinality),

2. r consumes only facts with timestamps in the past or at the current time, and

3. r creates at least one fact with timestamp greater than the global time.
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Formalizing Resilience

Definition (The (n, a, b)-resilience problem (by recursion on n) )

Let a ∈ Z+ and b ∈ N. Inputs: planning scenarios A = (R,GS, CS, E ,S0).
A trace is (0, a, b)-resilient with respect to A if it is a compliant trace of R rules
from S0 ∋ Time@t0 to a goal configuration and contains at most a+ b applications of
the Tick rule. For n > 0, a trace τ is (n, a, b)-resilient with respect to A if

1. τ is (0, a, b)-resilient with respect to A, and

2. for any system or goal update rule r ∈ E applied to a configuration Si in τ , with
Si −→r S ′

i+1, where global time ti in Si satisfies di = ti − t0 ≤ a, there exists a
reaction trace τ ′ of R rules from S ′

i+1 to a goal configuration S ′ such that τ ′ is
(n − 1, a− di , b)-resilient with respect to A′ = (R,GS, CS, E ,S ′

i+1).

A planning scenario A = (R,GS, CS, E ,S0) is (n, a, b)-resilient if an (n, a, b)-resilient
trace with respect to A exists. The (n, a, b)-resilience problem is to determine if a
given planning scenario A is (n, a, b)-resilient.
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Formalizing Resilience

τ : S0 . . . Si . . . Sk

τ ′ : S ′
i+1

. . . S ′

r

di (≤ a)

≤ a− di + b

Figure: An (n, a, b)-resilient trace τ and an (n − 1, a− di , b)-resilient reaction trace τ ′. The
horizontal arrows correspond to system rule applications, while the downward-facing arrow
represents an update rule application. The configurations Sk and S ′ on the far right are goal
configurations.
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Complexity Results

Definition

A decision problem is in ΣP
n (for n odd) if and only if there exists a polynomial-time

algorithm M such that an input x is a yes instance of the problem if and only if

∃u1∀u2∃u3 . . . ∀un−1∃un M(x , u1, . . . , un) accepts,

where the ui are polynomially-bounded in the size of x .

In our case, the existentially-quantified variables represent compliant goal traces, while
the universally-quantified variables represent update rule applications.
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Complexity Results

Theorem

The (n, a, b)-resilience problem for η-simple PPSs with traces containing only facts of
bounded size is ΣP

2n+1-complete.

Upper bound — by the quantifier-alternation characterization of ΣP
2n+1.

Lower bound — by a reduction from ΣP
2n+1-SAT.
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Travel Planning in Maude

• The goal is to attend a set of events in different places, with some required and some
optional.

• There is a knowledge base of flights to choose from.

• Updates include

1. flight delay, cancellation, or diversion; and

2. change of event start or duration.

• A critical configuration is one where the current time is later than the start time of a
required event and the event has not been attended.
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RWL vs MSR

• System state is represented by data structures rather than facts.

• There is just one time, the current time, represented as an element of the state

• Timers, delays, durations control the passing of time.

• Here, the passage of time is modeled using event/action duration:

1. taking a flight takes time, and

2. searching for flight is instantaneous.

• A variant on the usual RTMaude tick and instantaneous rules.

• An optimization of the uniform one time unit ticks model.
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Some details — state representation

tc(dateTime,city,location,events) — planning
tc(dateTime,city,location,events, event, flightLists) —traveling

• Maude Example
dateTime = dt(yd(23, 247), hm(12, 42)),

city = FRA, location = airport

event = ev("id215", DBV, center, yd(23,249), hm(14,0), hm(120,0),

false) attendance optional

flightList(s) = fi(fl(FRA,DBV,"id14",hm(15,25),hm(2,0))) –abstract flight
dt(yd(23,247),hm(15,25)), — departure date time
dt(yd(23,247),hm(17,25)) — arrival date time

• MSR example

{Time@(3d 14:42),Attended(main, no)@0, At(FRA, airport)@(3d 14:05),
Event(main, id215)@(5d 12:00),Flight2(id14,FRA,DBV)@(3d 15:25)}
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Some details — rules

• plan – find flight lists from to next event location

• flt – take flight duration = arrival - current time

• event – attend event duration = event dur + time to airport

• fltDigress — apply a flight update

• replan – when current time is too late for event or flight
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Checking n,a,b-resilience — input

initial state — a planning state with the full set of events to attend
tc(dateTime,city,location,events)
critical state – tcCrit(....)
goal state – tc(dateTime,city,location,mtE) – a terminal state
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Checking (n, a, b)-resilience — search algorithm

• Search algorithm

1. Use Maude search to find a compliant trace. If n = 0 return true.

2. Step through this trace. At each point make a branch for each enabled update,
decrement n and go to 1.

• How to do (2):

1. Convert the trace found by Maude search into a sequence of rule instances.

2. For each prefix, a maude strategy, and each update, append the update rule and
use srewrite to find all updates for this point in the trace.
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Experimental results

N: 1 2 3

2ev R? time R? time R? time

247 N 86ms - - - -
246 Y 81ms Y 147ms N 7476ms

3ev R? time R? time R? time

247 N 1400ms - - - -
246 Y 325ms Y 685ms NF -

(a) flight/system update rules

N: 1 2 3

2ev R? time R? time R? time

247 Y 78ms N 77ms - -
246 Y 98ms N 34800ms - -

3ev R? time R? time R? time

247 Y 143ms N 2627ms - -
246 Y 220ms Y 633ms Y 2634ms

(b) event/goal update rules

Figure: Summary of (n, a, b)-resilience experiments
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Summary

We have:

1. Described timed MSR systems for modeling planning scenarios.

2. Given a formal definition of resilience and analyzed its complexity.

3. Implemented this formalism in Maude and run experiments on resilience of our
travel example.

Questions?
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