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Motivation?

Opening sentence of a paper in Theoretical Computer Science:

In the theoretical analysis of the physical basis of compu-
tation there is a great deal of confusion and controversy.

Confusion — I may be able to contribute to that!

I happened to be writing an article on Ian Hacking on the 19th
century confusions regarding the concept of determinism when I
came across the sentence above, in Biggs & Tucker, ‘Can
Newtonian systems, bounded in space, time, mass and energy
compute all functions?’ (Theoretical Computer Science 371, 2007).
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Instability of some classical concepts

Ian Hacking describes a ‘silly season for determinism culminating
about 1872’: a period marked by ‘zany intellectual ferment’ and ‘a
whole series of conceptual confusions, false starts and crazy
responses’.

In the 21st century the situation seems to be not less confusing. In
2008, philosopher of science John Norton claimed ‘It has been
widely recognized for over two decades that, contrary to the
long-standing lore, Newtonian mechanics is not a deterministic
theory.’ Mathematical physicist David Malament responded, ‘we
do not have a sufficiently clear idea in the first place of what
should count as a “Newtonian system”.’

If we are not even sure what counts as a Newtonian system, what
should we make of the growing literature on the question of
whether physical computational devices can violate the
Church-Turing Thesis?
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Example: Zeno-Hilbert Hotel

In the 1990s Pérez Laraudogoitia presented an elementary example
of failure of determinism in Newtonian mechanics.

Image from John Earman, ‘Determinism: What We Have Learned and What We Still Don’t Know’ (2004).

There are far more complicated examples, sometimes related to
solutions of long-standing problems such as the Painlevé
Conjecture. It is also possible to give such examples in special
relativity and with finite total mass of the system.



Example: Norton’s Dome

Another simple example was devised by John Norton in 2008. Here
a point mass is placed at the apex of a circular dome.

Image from John Norton, ‘The Dome: An Unexpectedly Simple Failure of Determinism’ (2008).

The equation of motion under gravity is given by

d2r

dt2
=

√
r r(0) = 0 r ′(0) = 0

where r(t) is the distance from the apex of the dome. Expected solution

is r = 0. But solutions are not unique. Apparently the mass can start

rolling down the dome at an arbitrary time, in any direction.



A bit of confusion

On the one hand, we have a well known mathematical physicist
(Malament) saying — in 2008 — we’re not sure what Newtonian
systems are supposed to be. And The Oxford Handbook of
Philosophy of Physics (2013) included a substantial article on
‘What is “Classical Mechanics” Anyway?’

On the other hand, there are arguments that devices based on
classical mechanics are capable of going beyond the Church-Turing
Thesis. E.g., Beggs & Tucker (Theoretical Computer Science,
2007) write: ‘simple Newtonian kinematic systems that are
bounded in space, time, mass and energy can compute all possible
sets and functions on discrete data.’



A more specific confusion

In a seminal paper from the 1980s, Pour-El and Richards showed
that the standard 3D wave equation can have a computable initial
condition at t = 0 but the solution is uncomputable at t = 1.
(‘The Wave Equation with Computable Initial Data Such That Its
Unique Solution Is Not Computable’, Advances in Mathematics,
1981).

Two reactions in the mathematical physics community:

This is crazy! We routinely compute solutions of the wave
equation!

This is awesome! We can now imagine a ‘wave computer’, a
physical computing system that violates the Church-Turing
Thesis!
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On the other hand. . .

Some twenty years later, Weihrauch and Zhong analyzed the
Pour-El-Richards result using the finer framework of Type-2 Theory
of Effectivity. They conclude:

even under very idealizing assumptions about measurements and

wave propagation in reality, it seems to be very unlikely that the

Pour-El-Richards counterexample can be used to build a physical

machine with a ‘wave subroutine’ computing a function which is

not Turing computable. We may still believe that the Church-

Turing Thesis holds.

(’Is Wave Propagation Computable or Can Wave Computers Beat
the Turing Machine?’, Proc. London Math. Soc. 2002)



Enter General Relativity

Malament-Hogarth spacetime makes it possible for a Turing
machine to travel along a trajectory that has infinite proper time
and send a signal to an observer in whose frame the machine’s
trajectory has finite time. In this setting, the observer would have
at their disposal an infinite-time Turing machine. Some
uncomputable functions would be computable in a such a world.

Combining these spacetimes ultimately leads to the conclusion that
arithmetic would be decidable in a (specially designed) relativistic
spacetime. And more than arithmetic, as shown by Welch (‘The
Extent of Computation in Malament-Hogarth Spacetimes’, 2018).



More ‘realistic’ spacetimes

The discussion of Malament-Hogarth spacetimes usually centres on
whether they are physically reasonable. Usual answer is no, but
this relies on a certain hypothesis on what is a ‘physically
reasonable’ spacetime; which has been debated.

Supposedly more realistic models, e.g. Kerr rotating black hole
cosmology, have been utilized to argue the possibility of violations
of the Church-Turing Thesis. This argument was proposed by Etesi
and Németi in ‘Non-Turing computations via Malament-Hogarth
specetimes’ (Int. J. Theoretical Physics, 2002).



A radical claim, a metaphor from history geometry

In his ‘Non-Turing Computers are the New Non-Euclidean
Geometries’ (International Journal of Unconventional
Computation, 2009), Hogarth — of Hogarth-Malament spacetimes
— formulates the idea that the concept of computability is
dependent on the physical context in which a ‘machine’ resides:

non-Turing computers are viewed as one views non-
Euclidean geometries. [...] To put it another way, the
Church-Turing Thesis is like the outmoded claim: “Eu-
clidean geometry is the true geometry.”

But the ‘physical’ spacetimes in which these non-standard
computations purportedly occur are, of course,
mathematical models of an assumed ambient physics.



Brouwer-Weyl continnum in 3D

Let’s not start with physics but with a mathematical concept
related (loosely) to computation, and then see whether some
physics can be made to enter the picture. Why not.

According to Brouwer (and, for a time, Weyl), the continuum
should be regarded as the collection of ‘sequences of nested
intervals whose measure converges to zero.’

A higher-dimensional analog would be nested sequences of spheres
with radii converging to zero.

Let’s not worry about centres and radii being rational, we’ll come
back to that.



Some classical geometry

Classical geometry, going back to Laguerre and Lie, encodes the
space of oriented spheres in Rn as points in Rn+1: (x, r) with
x ∈ Rn being the centre and r ∈ R the oriented radius. In this
cyclographic representation the space of spheres has the structure
of the Minkowski space R1,n with the usual pseudometric.

Then for r1, r2 > 0, ||x1 − x2|| ≤ r1 − r2 iff the sphere (x2, r2) is
contained in the sphere (x1, r1)

In the terminology of special relativity, sphere inclusion corresponds
to events that are related in the causal order.

The concept of a nested sequence of spheres thus corresponds to a
time-oriented causal sequence of events in Minkowski space.



Restricting to positive radii

Laguerre and Lie were interested in oriented spheres. In the
Brouwer-Weyl approach there is no mention of orientation of
intervals, so we should restrict to positive radii.

Let’s look at a different representation of the space of spheres, in
terms of Lie cycles. For a sphere (x, r), with r > 0, consider the
vector (y0, . . . , yn+1) ∈ R1,n+2 given by

y0 = −1

2

( ||x||2 + 1

r
− r

)
(y1, . . . , yn) = −1

r
x

yn+1 = −1

2

( ||x||2 − 1

r
− r
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deSitter spacetime as space of spheres

With the coordinate transformations on the previous slide, we have
−y20 +

∑n+1
k=1 y

2
k = 1. Inducing the metric on this hyperboloid from

R1,n+2, one gets the deSitter metric on the space of spheres

ds2 =
1

r2
(−dr2 + dx2).

Substitution r = e∓t yields the usual form of the deSitter metric

ds2 = −dt2 + e±2tdx2

in flat slicing coordinates of the “expanding” (resp. “contracting”)
part.



Brouwer-Weyl continuum as space of causal curves

Our detour through classical geometries relates the
“higher-dimensional continuum” to a well known object in general
relativity.

Nested sequences of spheres correspond to “time”-oriented causal
sequences.

But without additional qualifications, such sequences could be
finite. A more precise analog would be:

Nested sequences of spheres in the 3D analog of the Brouwer-Weyl
continuum correspond to inextendible “time”-oriented causal
sequences (by analogy of inextendible causal curves): there is no
sphere that is contained in all spheres in the nested sequence.

One might think of them as computations that cannot be made
more precise?



Where does all this come from?

Order theorists are interested in inclusion representations of posets.
That is, one takes a set A of subsets of some space (e.g. spheres
in Rn, or intervals) and considers the set-theoretic inclusion
relation among them. The question then arises of which posets
admit an inclusion representation using objects in A.

In mathematical physics there is the Causal Set program, which
seeks to derive spacetime structure from discrete posets. The
question then arises of which posets can plausibly occur as part of
the causal order of a spacetime. This problem, at least in the case
of deSitter spacetime, relates to inclusion representation of posets
by spheres.



Can this be made discrete, in some sense?

Preceding discussion has a fatal flaw in that it relies on classical
analysis. Let’s see if we can work around it.

Martin and Panangaden (‘Domain Theory and General Relativity’,
in New Structures for Physics, 2010) introduce the category of
globally hyperbolic posets, which includes causal orders on globally
hyperbolic spacetimes such as deSitter.

This category is equivalent to the category of interval domains,
introduced by Scott in his pioneering work on the theory of
computation and semantics of programming languages.



Domain Theory aspect

The upshot of the argument by Martin and Panangaden is that
manifold topology (if not geometry) of a globally hyperbolic
spacetime — such as deSitter — can be recovered from a
countable dense subset of the associated interval domain of the
causal order.

The spacetime itself (if we start from one) is homeomorphic to the
set of maximal elements in the interval domain, with Scott
topology.

If no manifold is given from the start, but only a countable dense
poset — e.g., spheres with rational centres and rational radii —
one can take an ideal completion of the basis of intervals in the
poset. The set of maximal elements of the completion, with Scott
topology, is the “manifold”, topologically; but there is no metric.
(This is the fundamental problem of the causal set program.)



OK, and now what?

I don’t know. There are other problems with this thought
experiment. I’m sure you’ll point out many.

Here’s one: even if domain theory can be used to work around the
underlying classical analysis, we may still end up with a “3D
Brouwer-Weyl Continuum” that is too rigid in a technical sense.

Automorphisms of the causal order of the Minkowski space R1,n

for n > 1 are precisely the Lorenz transformations by a famous
theorem of Alexandrov and Zeeman. In this sense, the structure of
the continuum as a set of nested sequences of intervals (which
would correspond to n = 1) seems to be fundamentally different
from a higher-dimensional analog: the Alexandrov-Zeeman
theorem does not hold for n = 1, as there are nonlinear bijections
R → R that preserve interval order.



Thank you!


