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Linear Logic and Its Variations

▶ Resource aware logics have been object of passionate study for
quite some time now, with various motivations: usefulness for
modelling computations, interesting algebraic semantics and
nice proof-theoretic properties, polymodal extensions for
specification of several behaviours, applications in linguistics,
etc.

▶ Linear logic (LL), as introduced by Girard (1987), is a
refinement of classical and intuitionistic logic. Structural rules
of contraction and weakening in LL are allowed not for
arbitrary formulae, but only for formulae under the exponential.

▶ Intuitionistic linear logic is denoted by ILL and uses only one
exponential, !. In classical linear logic (LL), we have two dual
exponentials, ! and ?.



Linear Logic and Its Variations

▶ LL and ILL still have two implicit structural rules which may
be applied to all formulae, namely, exchange (commutativity)
and associativity.

▶ The Lambek calculus LC, introduced by Lambek (1958) for
linguistic applications, can be considered a non-commutative,
but still associative version of ILL, but without the exponential
and additive conjunction and disjunction.
▶ The link between LC and ILL was noticed by Abrusci (1991).
▶ In linear logic, one has to distinguish multiplicative conjunction

and disjunction (⊗,

&

) and additive ones (&, ⊕).

▶ In this talk, we consider the non-associative and
non-commutative intuitionistic linear logic, that is, the
non-associative Lambek calculus.



Exponential

▶ The exponential modality, !A, of Girard’s linear logic allows
structural rules (weakening and contraction) for formulae
under this modality.

▶ This modality allows embedding intuitionistic / classical logic
into linear logic.

▶ However, the exponential leads to undecidability (Lincoln et al.
1992).

▶ It is important to notice that in the non-commutative case
undecidability holds already for the multiplicative-only
fragment, while in the commutative case this remains an open
problem.



Subexponentials

▶ Subexponentials allow more fine-grained control over usage of
structural rules.

▶ Namely, instead of one exponential ! we now have a family of
subexponentials !i , marked by subexponential labels i ∈ I .
▶ I is a finite set of labels.

▶ Each subexponential allows a subset of the set of structural
rules; this information is kept in the subexponential signature
Σ.

▶ Another motivation for subexponentials is the non-canonicity
of !: even with the same set of rules one can have several
non-equivalent modalities.

▶ References for subexponentials: Danos, Joinet, Schellinx
(1993), Nigam and Miller (2009); for the non-commutative
case: Kanovich et al. (2019).



The Calculus acLLΣ

▶ This talk is a sequel to the following talk on IJCAR 2022:

E. Blaisdell, M. Kanovich, S. L. Kuznetsov, E. Pimentel,
A. Scedrov. Non-associative, non-commutative multi-modal
linear logic. In: Automated Reasoning, 11th International
Conference, IJCAR 2022 (Haifa, Israel, August 8–10, 2022),
LNCS vol. 13385, Springer, 2022, pp. 449–467.

▶ Our IJCAR 2022 talk features a subexponential extension of
the non-associative Lambek calculus, denoted by acLLΣ.

▶ This talk presents stronger undecidability results for fragments
of this system.



The Calculus acLLΣ

▶ The system, denoted by acLLΣ, will be a sequent calculus with
nested structures in antecedents.

▶ Possible structural rules will be contraction, weakening,
associativity, and exchange, so we have the following set
A = {C,W,A1,A2,E}.
▶ In what follows, we shall have two rules for associativity, A1

and A2.

▶ The subexponential signature, or simply dependent multimodal
logical system (SDML) is a triple Σ = (I ,≼, f ), where (I ,≼) is
a partially ordered set and f : I → 2A.

▶ Upward closure: if i ≼ j , then f (i) ⊆ f (j).



The Calculus acLLΣ

▶ Elements of I will be labels for subexponentials.
▶ The subexponential !i allows structural rules from the set f (i).
▶ The partial order ≼ prescribes interaction axioms between

subexponentials: if i ⪯ j , then we have !jA⇒ !iA.
▶ Actually, the form of interaction axioms is more general, as we

shall see below.



The Calculus acLLΣ
▶ Formulae of acLLΣ are built from variables and constants 1

(unit) and ⊤ (additive truth), using the following binary
operations: ⊗ (multiplicative conjunction), ⊕ (additive
disjunction), & (additive conjunction), → (left implication), ←
(right implication), and unary subexponentials !iA (i ∈ I ).

▶ Sequents of acLLΣ are expressions of the form Γ⇒ A, where
A is a formula and Γ is a nested structure.

▶ Nested structures are defined by the following grammar:
Γ := F | (Γ, Γ) | ∅.

▶ We shall consider contexts, which are nested structures with
holes, of the form Γ{ } (one hole) or Γ{1 } . . . {n } (several
holes).

▶ Holes may be filled by formulae or other nested structures (in
particular, the empty one).

▶ Structures with the empty structure are truncated in a natural
way (e.g., (∅, Γ) is just Γ).



The Calculus acLLΣ
Propositional rules

Γ{(F ,G )} ⇒ H

Γ{F ⊗ G} ⇒ H
⊗L Γ1 ⇒ F Γ2 ⇒ G

(Γ1, Γ2)⇒ F ⊗ G
⊗R

Γ{F} ⇒ H Γ{G} ⇒ H

Γ{F ⊕ G} ⇒ H
⊕L Γ⇒ Fi

Γ⇒ F1 ⊕ F2
⊕Ri

Γ{Fi} ⇒ G

Γ{F1 & F2} ⇒ G
&Li

Γ⇒ F Γ⇒ G
Γ⇒ F & G

&R

∆⇒ F Γ{G} ⇒ H

Γ{(∆,F → G )} ⇒ H
→ L

(F , Γ)⇒ G

Γ⇒ F → G
→ R

∆⇒ F Γ{G} ⇒ H

Γ{(G ← F ,∆)} ⇒ H
← L

(Γ,F )⇒ G

Γ⇒ G ← F
← R

Γ{ } ⇒ F

Γ{1} ⇒ F
1L ⇒ 1 1R Γ⇒ ⊤ ⊤R



The Calculus acLLΣ
Initial and cut rules

F ⇒ F
init

∆⇒ F Γ
{

1
F
}
. . .

{n
F
}
⇒ G

Γ
{

1
∆
}
. . .

{n
∆
}
⇒ G

mcut



The Calculus acLLΣ
Subexponential rules

Γ↑i ⇒ F

Γ⇒ !iF
!iR

Γ{F} ⇒ G

Γ
{
!iF

}
⇒ G

der

Here Γ↑i means that we require all formulae of Γ be either of the
form !jA, where j ≽ i or of the form !kA, where f (k) ∋W and
j ̸≽ i , and remove the latter from Γ. (Otherwise Γ↑i is undefined,
and the rule is not applicable.)



The Calculus acLLΣ
Structural rules

Γ{((!a∆1,∆2),∆3)} ⇒ G

Γ{(!a∆1, (∆2,∆3))} ⇒ G
A1

Γ{(∆1, (∆2, !
a∆3))} ⇒ G

Γ{((∆1,∆2), !
a∆3)} ⇒ G

A2

Γ{(∆2, !
e∆1)} ⇒ G

Γ{(!e∆1,∆2)} ⇒ G
E1

Γ{(!e∆2,∆1)} ⇒ G

Γ{(∆1, !
e∆2)} ⇒ G

E2

Γ{ } ⇒ G

Γ{!w∆} ⇒ G
W

Γ
{

1
!c∆

}
. . .

{n
!c∆

}
⇒ G

Γ
{

1
}
. . .

{
k
!c∆

}
. . .

{n }⇒ G
C

Each rule is enabled only if the corresponding letter of
A = {A1,A2,E,C,W} belongs to f (i), where i = a, e,w , c ,
respectively.



Linguistic Examples

▶ As already noticed, the Lambek calculus was introduced for 
modelling natural language syntax.

▶ The basic example is “John likes Mary,” which corresponds to 
the following sequent:

np, (np → s)← np, np ⇒ s.

▶ Here np stands for “noun phrase” and s stands for “sentence.”
Further n will mean “common noun.”

▶ This sequent keeps valid without associativity:

np, ((np → s)← np, np)⇒ s.



Linguistic Examples

▶ Moreover, sometimes associativity leads to validating incorrect
phrases.

▶ For example, phrases “The Hulk is green” and “The Hulk is
incredible” [Moot, Retoré 2012] are validated by the following
sequent:

(np ← n, n), ((np → s)← (n← n), n← n)⇒ s.

▶ In the presence of associativity, the following is also derivable:

np ← n, n, (np → s)← (n← n), n← n, n← n⇒ s,

which corresponds to the incorrect phrase “The Hulk is green
incredible.”



Linguistic Examples

▶ Other syntactic phenomena, however, require associativity.
▶ An example is “the girl whom John loves:”

np ← n, n, (n→ n)← (s ← np), np, (np → s)← np ⇒ np.

Here associativity is essential.
▶ In our subexponential extension of the non-associative Lambek

calculus, we analyse this example by assigning to whom the
formula (n→ n)← (s ← !anp), where f (a) = {A2}:

np ← n, (n, ((n→ n)← (s ← !anp), (np, (np → s)← np)))⇒ np.



Linguistic Examples

▶ The necessity of this more fine-grained control of associativity
(instead of global associativity) is seen via a combination of
these two examples.

▶ Phrases like “The superhero whom Hawkeye killed was
incredible” and “... was green” are analysed using !a:

(np ← n, (n, ((n→ n)← (s ← !anp), (np, (np → s)← np)))),

((np → s)← (n← n), n← n)⇒ s.

▶ On the other hand, global non-associativity prevents from
deriving incorrect phrases like “The superhero whom Hawkeye
killed was green incredible.”



Other Approaches

▶ There are also other approaches to controlling associativity and 
non-associativity in the Lambek calculus.

▶ The multi-modal Lambek calculus (Oehrle and Zhang 1989, 
Moortgat and Morrill 1991, Hepple 1994, Moot and Retoré 2012 
etc) uses different families of connectives, distinguished by 
indices called modes: →i , ←i , ⊗i , . . . Each mode has its own set 
of rules.

▶ Another approach is the framework of the Lambek calculus with 
brackets (Morrill 1992, Moortgat 1994). This is a dual approach: 
the base system is associative, and brackets and bracket 
modalities introduce controlled non-associativity.



Undecidability Results

▶ In the commutative and associative case, LL (and ILL) is
undecidable (Lincoln et al. 1992).

▶ However, this requires additives; (un)deciability of MELL,
multiplicative-exponential linear logic, is a well-known open
problem.

▶ Let us take a note that MELL with several (three is sufficient)
subexponentials is undecidable (Chaudhuri 2014).

▶ In the non-commutative, but associative case, the exponential
extension of the Lambek calculus is undecidable, even without
additives.

▶ The latter undecidability result can be proved by encoding
reasoning from hypotheses (non-logical axioms) in the Lambek
calculus.

▶ The exponential may be replaced by an subexponential
allowing non-local contraction (Kanovich et al. 2019).



Undecidability Results

▶ For the non-associative Lambek calculus, however, reasoning
from hypotheses is polynomially (!) decidable (Buszkowski
2005).

▶ Thus we could make a conjecture that the multiplicative-only
fragment of acLLΣ, where Σ includes only one full-power
exponential, is also decidable.

▶ However, additive operations or several subexponentials make
the system undecidable.

▶ Thus, the situation is probably more like the commutative
associative one.



Undecidability Results

Theorem
If there exists such s ∈ I that f (s) ∋ C, then the derivability
problem in acLLΣ is undecidable. Moreover, this holds for the
fragment with only ⊗, →, ⊕, !s .

▶ This result follows from undecidability of derivability from
hypotheses (consequence relation) for the
multiplicative-additive Lambek calculus (Chvalovský 2015).
This result is a refinement of a result by Tanaka (2019).

▶ In IJCAR 2022: f (s) ⊇ {C,W}, i.e., weakening was also
required.



Undecidability Results

Theorem
If there are a, c ∈ I such that f (a) = {A1,A2} and f (c) ∋ C, then
the derivability problem in acLLΣ is undecidable, in the fragment
with only →, !a, !c .

▶ This result is a purely multiplicative one. However, now we
need two subexponentials, one for associativity, the other for
contraction.

▶ We also use only one division, no product, using Buszkowski’s
(1982) ideas.



Going Classical

▶ We introduce the calculus CacLLΣ, which is the classical (as
Girard’s original linear logic) extension of acLLΣ.

▶ The motivation for going classical is in the line of De Groote
and Lamarche (2002): we wish to observe the symmetries
which are latent in the intuitionistic setting.

▶ Namely, intuitionistic linear logic systems lack multiplicative
disjunction ( &) and negation.

▶ The classical system is symmetric... and in the substructural
setting it is actually a conservative extension of the
intuitionistic one!
▶ ... up to a couple of exceptions.
▶ A different (left-handed) one-sided classical system was

proposed by Buszkowski (2016). Grammars based on
Buszkowski’s system generate context-free languages.



Formulae and One-Sided Sequents

▶ Sequents in the classical case are one-sided, of the form ⇒ Γ.
▶ Here Γ is a structure, that is, a binary tree of formulae:

Γ ::= ∅ | F | (Γ, Γ).

▶ Formulae of CacLLΣ are constructed as follows:

literals multiplicatives additives subexp.

F ,G , . . . ::= A | F ⊗ G | 1 | F ⊕ G | 0 | !iF

| A⊥ | F &G | ⊥ | F &G | ⊤ | ?iF

▶ Subexponential signature: Σ = (I,⪯, f ), where
f (i) ⊆ {C,W,E,A1,A2} for each i ∈ I.
▶ The f function declares which structural rules are available for

a given subexponential; ⪯ defines entailments between
subexponentials.



Rules of CacLLΣ
Propositional rules

⇒ Γ,G ⇒ ∆,F

⇒ ((Γ,∆),F ⊗ G )
⊗

⇒ Γ{(F ,G )}
⇒ Γ{F &G}

&

⇒ Γ{Fi}
⇒ Γ{F1 ⊕ F2}

⊕i
⇒ Γ{F1} ⇒ Γ{F2}
⇒ Γ{F1 & F2}

&

⇒ Γ{ }
⇒ Γ{⊥} ⊥ ⇒ 1

1 ⇒ Γ{⊤} ⊤

Structural Rules

⇒ (∆, Γ)

⇒ (Γ,∆)
E

⇒ (Γ, (∆,Π))

⇒ ((Γ,∆),Π)
A1

⇒ ((Γ,∆),Π)

⇒ (Γ, (∆,Π))
A2

Initial and cut rules

⇒ (A,A⊥)
init

⇒ (Γ,A) ⇒ (A⊥,∆)

⇒ (Γ,∆)
cut



Rules of CacLLΣ

Subexponential rules

⇒ (Γ↑i ,F )

⇒ (Γ, !iF )
prom

⇒ Γ{F}
⇒ Γ

{
?iF

} der

Subexponential Structural rules

⇒ (((∆1,∆2),∆3), ?
a1Γ)

⇒ ((∆1, (∆2,∆3)), ?
a1Γ)

?A1
⇒ ((∆1, (∆2,∆3)), ?

a2Γ)

⇒ (((∆1,∆2),∆3), ?
a2Γ)

?A2

⇒ ((∆2,∆1), ?
eΓ)

⇒ ((∆1,∆2), ?
eΓ)

?E

⇒ Γ{ }
⇒ Γ{?w∆} ?W

⇒ Γ{?c∆} . . . {?c∆}
⇒ Γ{ } . . . {?c∆} . . . { } ?C

Here Γ↑i means the following: Γ may be weakened, and after that we
guarantee that it consists of !jG ’s, where j ⪰ i .



Cyclic Shifts and Keyrings

▶ Global structural rules, E, A1 and A2, may look strange, as we
did not want our system to be commutative or associative.

▶ However, they are in fact not “real” commutativity and
associativity, but rather a non-associative version of cyclic
reorganisation of sequent structure.

▶ In the associative, but non-commutative setting, there is cyclic
linear logic, which allows a global rule of cyclic shift (E).

▶ This rule might be made implicit, by considering cyclically
ordered sequences of formulae as sequent structures.



Cyclic Shifts and Keyrings

▶ For our non-associative system, such an invariant description
of structures is more sophisticated.

▶ This construction is called unrooted cyclically-ordered-neigbor
3-regular trees with leaves: each internal node keeps the cyclic
order of its neighbours, but nothing more.

Keys by Nick Youngson CC BY-SA 3.0 Alpha Stock Images



Cut Elimination

Theorem
If a sequent ⇒ Γ is provable in CacLLΣ, then there is a proof in
which the cut rule is not applied.

The proof uses the classical Gentzen method. Contraction is
handled using the mix rule:

⇒ (Γ, !cA⊥) ⇒ (?cA,∆{?cA} . . . {?cA})
⇒ (Γ,∆{} . . . {}) mix



Cut Elimination

Theorem
If a sequent ⇒ Γ is provable in CacLLΣ, then there is a proof in
which the cut rule is not applied.
The proof uses the classical Gentzen method. Contraction is
handled using the mix rule:

⇒ (Γ, !cA⊥) ⇒ (?cA,∆{?cA} . . . {?cA})
⇒ (Γ,∆{} . . . {}) mix



Embedding of acLLΣ into CacLLΣ

As noticed before, the intuitionistic system is conservatively
embedded into the classical one, via the following translation:

p̂ :≡ p Â⊗ B :≡ Â⊗ B̂

Â→ B :≡ Â⊥ &B̂ B̂ ← A :≡ B̂ &Â⊥

Â&B :≡ Â& B̂ Â⊕ B :≡ Â⊕ B̂

!̂iA :≡ !i Â 1̂ :≡ 1

⊤̂ :≡ ⊤ Γ̂⇒ A :≡ (Γ̂⊥, Â)

(Negations in our calculus are tight, so applying negation to a
formula or structure actually means propagation by de Morgan
laws, exchanging the order for multiplicatives.)



Conservativity

Theorem
If for all labels i in Σ we have f (i) ⊆ {C,W,E}, then a sequent
Γ⇒ A is provable in acLLΣ iff ⇒ (Γ̂⊥, Â) is provable in CacLLΣ.

▶ This theorem is in the spirit of Schellinx’ result (1991) on
embedding intuitionistic LL into classical LL.

▶ The proof uses a technique by Pentus (1998).
▶ For modalities licensing associativity, the counter-example is

((a⊗ b)⊗ !ac)⇒ (a⊗ (b ⊗ !ac)).
▶ This counterexample comes from the difference in associativity

rules for acLLΣ and CacLLΣ. It can be eliminated by extending
acLLΣ with appropriate rules.



Counterexample with Zero

▶ Adding the zero constant to acLLΣ also ruins conservativity:

Theorem
The following sequent is not provable in acLLΣ, but its translation
is provable in CacLLΣ:

!a((r ← (0→ q))← p), (s ← p)→ 0⇒ r .

▶ This is a modification of the counterexample by Schellinx.



Future Work

▶ Focusing for CacLLΣ.
▶ Connections to other frameworks with controlled associativity.
▶ Complexity: undecidability for the whole CacLLΣ gets inherited

from acLLΣ by conservativity, but decidability results for
fragments would be stronger.



Hvala!




