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Linear Logic and Its Variations

> Resource aware logics have been object of passionate study for
quite some time now, with various motivations: usefulness for
modelling computations, interesting algebraic semantics and
nice proof-theoretic properties, polymodal extensions for
specification of several behaviours, applications in linguistics,
etc.

» Linear logic (LL), as introduced by Girard (1987), is a
refinement of classical and intuitionistic logic. Structural rules
of contraction and weakening in LL are allowed not for
arbitrary formulae, but only for formulae under the exponential.

» Intuitionistic linear logic is denoted by ILL and uses only one
exponential, !. In classical linear logic (LL), we have two dual
exponentials, ! and ?.



Linear Logic and Its Variations

» LL and ILL still have two implicit structural rules which may
be applied to all formulae, namely, exchange (commutativity)
and associativity.

» The Lambek calculus LC, introduced by Lambek (1958) for
linguistic applications, can be considered a non-commutative,
but still associative version of ILL, but without the exponential
and additive conjunction and disjunction.

» The link between LC and ILL was noticed by Abrusci (1991).
» In linear logic, one has to distinguish multiplicative conjunction
and disjunction (®, %) and additive ones (&, ®).
» In this talk, we consider the non-associative and
non-commutative intuitionistic linear logic, that is, the
non-associative Lambek calculus.



Exponential

» The exponential modality, 'A, of Girard's linear logic allows
structural rules (weakening and contraction) for formulae
under this modality.

» This modality allows embedding intuitionistic / classical logic
into linear logic.

» However, the exponential leads to undecidability (Lincoln et al.
1992).

> |t is important to notice that in the non-commutative case
undecidability holds already for the multiplicative-only
fragment, while in the commutative case this remains an open
problem.



Subexponentials

» Subexponentials allow more fine-grained control over usage of
structural rules.
» Namely, instead of one exponential ! we now have a family of
subexponentials ", marked by subexponential labels i € .
» | is a finite set of labels.

» Each subexponential allows a subset of the set of structural
rules; this information is kept in the subexponential signature
Y.

» Another motivation for subexponentials is the non-canonicity
of I: even with the same set of rules one can have several
non-equivalent modalities.

» References for subexponentials: Danos, Joinet, Schellinx
(1993), Nigam and Miller (2009); for the non-commutative
case: Kanovich et al. (2019).



The Calculus acLLy

» This talk is a sequel to the following talk on IJCAR 2022:

E. Blaisdell, M. Kanovich, S. L. Kuznetsov, E. Pimentel,

A. Scedrov. Non-associative, non-commutative multi-modal
linear logic. In: Automated Reasoning, 11th International
Conference, IJCAR 2022 (Haifa, Israel, August 8-10, 2022),
LNCS vol. 13385, Springer, 2022, pp. 449-467.

» Our IJCAR 2022 talk features a subexponential extension of
the non-associative Lambek calculus, denoted by aclLLy.

» This talk presents stronger undecidability results for fragments
of this system.



The Calculus acLLy

» The system, denoted by acLLy, will be a sequent calculus with
nested structures in antecedents.

» Possible structural rules will be contraction, weakening,
associativity, and exchange, so we have the following set
A= {C,W,AL A2 E}.

» In what follows, we shall have two rules for associativity, Al
and A2.

» The subexponential signature, or simply dependent multimodal
logical system (SDML) is a triple ¥ = (/, %, f), where (/,<) is
a partially ordered set and f: | — 24,

» Upward closure: if i < j, then (i) C f()).



The Calculus acLLy

» Elements of / will be labels for subexponentials.

v

The subexponential ! allows structural rules from the set ().

» The partial order < prescribes interaction axioms between
subexponentials: if / < j, then we have VA = I'A.

» Actually, the form of interaction axioms is more general, as we

shall see below.



The Calculus acLLy

» Formulae of acLLy are built from variables and constants 1
(unit) and T (additive truth), using the following binary
operations: ® (multiplicative conjunction), @ (additive
disjunction), & (additive conjunction), — (left implication), <
(right implication), and unary subexponentials I'A (i € I).

» Sequents of acLLy are expressions of the form I' = A, where
A'is a formula and I is a nested structure.

> Nested structures are defined by the following grammar:
r=F~rf|(r,nio.

» We shall consider contexts, which are nested structures with
holes, of the form I'{ } (one hole) or F{* }...{" } (several
holes).

» Holes may be filled by formulae or other nested structures (in
particular, the empty one).

» Structures with the empty structure are truncated in a natural
way (e.g., (&, is just ).



The Calculus acLLy

PROPOSITIONAL RULES
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The Calculus aclLLy

INITIAL AND CUT RULES

init

a=F r{F} . {Fy =6
r{a}..{'a}=¢

mcut



The Calculus acLLy

SUBEXPONENTIAL RULES

M=F;

r—if R

M{F}=G

r{iF} =6

Here ' means that we require all formulae of I be either of the
form VA, where j 5= i or of the form 1kA where f(k) >W and
j # i, and remove the latter from . (Otherwise ' is undefined,
and the rule is not applicable.)



The Calculus acLLy

STRUCTURAL RULES

A2

M{((""A1,A2),03)} = G AL M{(A1,(A2,1°A3))} = G
M{(1?Aq1, (A2, A3))} = G M{((A1,A2),17A3)} = G
I'{(Ag, !eAl)} =G I'{(l Ag,Al)} =G
H{(*AL M)} = G °F T{(AL*A) = G

1o 6 r{eal. . {"ea} =6
rva = W r{th{eat =6 ‘

Each rule is enabled only if the corresponding letter of
A ={A1,A2,E,C,W} belongs to f(i), where i = a, e, w,c,
respectively.




Linguistic Examples

» As already noticed, the Lambek calculus was introduced for
modelling natural language syntax.

» The basic example is “John likes Mary,” which corresponds to
the following sequent:

np, (np — s) < np,np = s.

» Here np stands for “noun phrase” and s stands for “sentence.”
Further n will mean “common noun.”

» This sequent keeps valid without associativity:

np, ((np — s) <= np,np) = s.



Linguistic Examples

» Moreover, sometimes associativity leads to validating incorrect
phrases.

» For example, phrases “The Hulk is green” and “The Hulk is
incredible” [Moot, Retoré 2012] are validated by the following
sequent:

(np < n,n),((np —s) < (n<n),n< n)=s.
> In the presence of associativity, the following is also derivable:
np < n,n,(np —s) < (n<n),n< n,n< n=s,

which corresponds to the incorrect phrase “The Hulk is green
incredible.”



Linguistic Examples

» Other syntactic phenomena, however, require associativity.

» An example is “the girl whom John loves:”
np < n,n,(n — n) < (s < np),np, (np — s) < np = np.

Here associativity is essential.

» In our subexponential extension of the non-associative Lambek
calculus, we analyse this example by assigning to whom the
formula (n — n) < (s < !?np), where f(a) = {A2}:

np < n,(n,((n — n) < (s < ?np), (np, (np — s) < np))) = np.



Linguistic Examples

» The necessity of this more fine-grained control of associativity
(instead of global associativity) is seen via a combination of
these two examples.

» Phrases like “The superhero whom Hawkeye killed was
incredible” and “... was green” are analysed using !°:

(np < n,(n, ((n — n) < (s <= np), (np, (np — s) <= np)))),
((np—s) < (n<n),n< n)=s.

» On the other hand, global non-associativity prevents from
deriving incorrect phrases like “The superhero whom Hawkeye
killed was green incredible.”



Other Approaches

>

>

There are also other approaches to controlling associativity and
non-associativity in the Lambek calculus.

The multi-modal Lambek calculus (Oehrle and Zhang 1989,
Moortgat and Morrill 1991, Hepple 1994, Moot and Retoré 2012
etc) uses different families of connectives, distinguished by
indices called modes: —;, <, ®;, ... Each mode has its own set
of rules.

Another approach is the framework of the Lambek calculus with
brackets (Morrill 1992, Moortgat 1994). This is a dual approach:
the base system is associative, and brackets and bracket
modalities introduce controlled non-associativity.



Undecidability Results

>

>

In the commutative and associative case, LL (and ILL) is
undecidable (Lincoln et al. 1992).

However, this requires additives; (un)deciability of MELL,
multiplicative-exponential linear logic, is a well-known open
problem.

Let us take a note that MELL with several (three is sufficient)
subexponentials is undecidable (Chaudhuri 2014).

In the non-commutative, but associative case, the exponential
extension of the Lambek calculus is undecidable, even without
additives.

The latter undecidability result can be proved by encoding
reasoning from hypotheses (non-logical axioms) in the Lambek
calculus.

The exponential may be replaced by an subexponential
allowing non-local contraction (Kanovich et al. 2019).



Undecidability Results

» For the non-associative Lambek calculus, however, reasoning
from hypotheses is polynomially (!) decidable (Buszkowski
2005).

» Thus we could make a conjecture that the multiplicative-only
fragment of acLLy, where X includes only one full-power
exponential, is also decidable.

» However, additive operations or several subexponentials make
the system undecidable.

» Thus, the situation is probably more like the commutative
associative one.



Undecidability Results

Theorem

If there exists such s € | that f(s) > C, then the derivability
problem in acLLy is undecidable. Moreover, this holds for the
fragment with only ®, —, @, 1°.

» This result follows from undecidability of derivability from
hypotheses (consequence relation) for the
multiplicative-additive Lambek calculus (Chvalovsky 2015).
This result is a refinement of a result by Tanaka (2019).

» In [JCAR 2022: f(s) D {C,W}, i.e., weakening was also
required.



Undecidability Results

Theorem

If there are a,c € | such that f(a) = {A1,A2} and f(c) > C, then
the derivability problem in acLLy is undecidable, in the fragment
with only —, 12, 1€,

» This result is a purely multiplicative one. However, now we
need two subexponentials, one for associativity, the other for
contraction.

» We also use only one division, no product, using Buszkowski's
(1982) ideas.



Going Classical

» We introduce the calculus CacLLy, which is the classical (as
Girard's original linear logic) extension of acLLy.

» The motivation for going classical is in the line of De Groote
and Lamarche (2002): we wish to observe the symmetries
which are latent in the intuitionistic setting.

» Namely, intuitionistic linear logic systems lack multiplicative
disjunction (79) and negation.

» The classical system is symmetric... and in the substructural
setting it is actually a conservative extension of the
intuitionistic one!

» ... up to a couple of exceptions.

> A different (left-handed) one-sided classical system was
proposed by Buszkowski (2016). Grammars based on
Buszkowski's system generate context-free languages.



Formulae and One-Sided Sequents

» Sequents in the classical case are one-sided, of the form =T.
» Here [ is a structure, that is, a binary tree of formulae:

Fre=o|F|(,TI).

» Formulae of CaclLy are constructed as follows:

F,G,... == A |[F®G | 1 | F®&G | 0 | I'F
| AL | FG | L | F&G | T | 7F

» Subexponential signature: ¥ = (Z, <, ), where
f(i) C {C,W,E, A1, A2} for each i € Z.
» The f function declares which structural rules are available for
a given subexponential; < defines entailments between
subexponentials.



Rules of CaclLy

PROPOSITIONAL RULES

=G =AF =T{(F,G)}
= (I A),F® G) =T{FrnG}
= F{F,-} ) = F{Fl} = F{Fz}
=T{RoFR} = T{F&F)}
=TI{}
St =1t oS !
STRUCTURAL RULES
= (A1) = (I, (A, 1)) = ((I,A), M)
o f o.M S A

INITIAL AND CUT RULES

i = (ILA) = (AL, D)
= (AAD M = (1) cut




Rules of CaclLy
SUBEXPONENTIAL RULES
=T{F}

= (I, F)

——FFF X prom B ——— d

= (IILV'F) :>I'{?’F}
SUBEXPONENTIAL STRUCTURAL RULES

= (((A1,A2), A3), 7alr) AL = ((A1, (A2, A3)),77°T)
= ((A1,(A2,A3)),7 = (((A1,A2), A3), ?azr)
r

7A2

)
E(A%Al) S

= ((A1,A2),7°T)
= = [{7A}.. {7°A}
TN N SENTNR

7C

Here I'" means the following: I may be weakened, and after that we
guarantee that it consists of ¥ G's, where j = /.



Cyclic Shifts and Keyrings

» Global structural rules, E, Al and A2, may look strange, as we
did not want our system to be commutative or associative.

» However, they are in fact not “real” commutativity and
associativity, but rather a non-associative version of cyclic
reorganisation of sequent structure.

» In the associative, but non-commutative setting, there is cyclic
linear logic, which allows a global rule of cyclic shift (E).

» This rule might be made implicit, by considering cyclically
ordered sequences of formulae as sequent structures.



Cyclic Shifts and Keyrings

» For our non-associative system, such an invariant description
of structures is more sophisticated.

» This construction is called unrooted cyclically-ordered-neigbor
3-regular trees with leaves: each internal node keeps the cyclic
order of its neighbours, but nothing more.

Keys by Nick Youngson CC BY-SA 3.0 Alpha Stock Images



Cut Elimination

Theorem
If a sequent = [ is provable in CaclLLy, then there is a proof in
which the cut rule is not applied.



Cut Elimination

Theorem
If a sequent = [ is provable in CaclLLy, then there is a proof in
which the cut rule is not applied.

The proof uses the classical Gentzen method. Contraction is
handled using the mix rule:

= ([,1SAL) = (2°A, A{7°A}.. . {7°A})
= (IL,A{}...{}) mix




Embedding of acLLy into CacLLs

As noticed before, the intuitionistic system is conservatively
embedded into the classical one, via the following translation:

p=p /@ZEA\®§

ASB=Alnb E A= Bryil
A/&\BZEA\&/B\ m:zﬁ@g

@\z!'ﬁ 1:=1

T=T = A= (Tt A)

(Negations in our calculus are tight, so applying negation to a
formula or structure actually means propagation by de Morgan
laws, exchanging the order for multiplicatives.)



Conservativity

Theorem
If for all labels i in & we have f(i) C {C,W,E}, then a sequent
I = A is provable in acLLy iff = (I'+, A) is provable in CaclLLs.

» This theorem is in the spirit of Schellinx’ result (1991) on
embedding intuitionistic LL into classical LL.

» The proof uses a technique by Pentus (1998).

» For modalities licensing associativity, the counter-example is
((a®@b)®!%c) = (a® (b® ¥c)).

» This counterexample comes from the difference in associativity

rules for acLLy and CaclLLy. It can be eliminated by extending
acLLy with appropriate rules.



Counterexample with Zero

» Adding the zero constant to acLLy also ruins conservativity:

Theorem
The following sequent is not provable in acLLy, but its translation
is provable in CaclLsy:

P((r<(0—=4q))«<p)(s<p)—=0=r.

» This is a modification of the counterexample by Schellinx.



Future Work

» Focusing for CaclLLy.

» Connections to other frameworks with controlled associativity.

» Complexity: undecidability for the whole CacLLy gets inherited
from acLLy by conservativity, but decidability results for
fragments would be stronger.



Hvala!





