
14th International Conference

Logic and Applications

LAP 2025

September 24 - 28, 2025
Dubrovnik, Croatia

Book of Abstracts

Course directors:

• Zvonimir Šikić, University of Zagreb

• Andre Scedrov, University of Pennsylvania

• Silvia Ghilezan, University of Novi Sad

• Zoran Ognjanović, Mathematical Institute of SASA, Belgrade

• Thomas Studer, University of Bern



Book of Abstracts of the 14th International Conference on Logic and
Applications - LAP 2025, held as a hybrid meeting hosted by the Inter
University Center Dubrovnik, Croatia, September 24 - 28, 2025.

LATEX book of abstracts preparation and typesetting:

• Dušan Gajić, University of Novi Sad

• Simona Prokić, University of Novi Sad

• Anastazia Žunić, Mathematical Institute of SASA, Belgrade

LAP 2025 Web site: https://lap.math.hr/LAP2025/ Maintained by
Marko Horvat, University of Zagreb, and Simona Prokić, University of Novi
Sad.

1

https://lap.math.hr/LAP2025/


Contents

1 Tin Adlešić
New Foundations and Strongly Cantorian Sets 5

2 Matthias Baaz
Decidability of Bernays–Schönfinkel Class of Gödel Logics 6

3 Péter Battyányi
Normalization in the λµµ′-calculus 9

4 Marija Boričić Joksimović, Nebojša Ikodinović, Nenad Stojanović
Suppes–style probabilistic natural deduction 12

5 Sanda Bujačić Babić, Tajana Ban Kirigin
Interpretable vs. Learnable Centrality: Combining SLI and Neural
Networks 15

6 Jesse Comer, Tajana Ban Kirigin, Max Kanovich, Andre Scedrov,
Carolyn Talcott
Computational Complexity of Some Time-Bounded Verification Prob-
lems 17

7 Vedran Čačić, Tin Adlešić
How to extend the set-theoretic vocabulary in a type-safe way? 19

8 Matea Čelar
Computability of spaces with cylindrical ends 21

9 Mariami Gamsakhurdia
Incorrect Proofs and Epsilon Calculus 23

10 Silvia Ghilezan
Logical foundations for correct communication of distributed machine
learning 25

11 Simon Guilloud
Theory and Applications of Orthologic 27

12 Sebastijan Horvat, Borja Sierra Miranda, Thomas Studer
Cut-elimination for non-wellfounded sequent calculi for IL 31

13 Zvonko Iljazović, David Tarandek
Computable subcontinua of circularly chainable continua 32

2



14 Zvonko Iljazović, Patrik Vasung
Computable categoricity and subspaces of Euclidean space 34

15 Zvonko Iljazović, Patrik Vasung
Computability of common fixed points of isometries 35

16 Gabriel Istrate
On the Proof Complexity of Several Combinatorial Principles: the
role of Kernelization 37

17 Goran Ivanković, Marko Horvat, Marko Horvat
Fine-Tuning LLMs for Croatian Text Retrieval 40

18 Sándor Jenei
Amalgamation in classes of involutive commutative residuated lat-
tices 42

19 Stepan L. Kuznetsov
Exponentiation and Iteration in the Lambek Calculus and Its Vari-
ants 45

20 Helena Marciuš
Polytopological semantics of interpretability and conservativity logic 47

21 Stipe Marić
Finite model property and decidability of inquisitive neighborhood
logic 48

22 Jose Meseguer
Symbolic Computation and Verification Methods in Maude 50

23 Michael Moortgat
Two Entensions of Lambek Calculus 51

24 Luke Serafin
Kleene Algebras and Morita Equivalence 53

25 Teo Šestak
Algebraic semantics for interpretability logics 56

26 Zvonimir Šikić
Goedel’s ontological proof 58

27 Carolyn Talcott, Farhad Arbab
Concurrent Rules Machines: a Model of Open Cyberphysical Systems 59

3



28 İskender Taşdelen
Natural Deduction Systems for Conjunctive Multiple-Conclusion Log-
ics 61

29 Maxim Vishnikin
Properties of categorial grammars with k-type assignment 63

30 Zvonko Iljazović, Matea Jelić
On approximating semicomputable continua 66

4



New Foundations and Strongly
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New Foundations is a set theory, introduced by Quine in 1937, axiomatized
by the axiom of extensionality and the axiom of stratified comprehension. Its
main feature is that it allows the existence of very large sets, such as the universal
set, the set of all ordinals, the set of all cardinals, etc. The usual set-theoretic
paradoxes are then blocked by limiting set-defining formulas only to stratified
formulas (well-built formulas in the simple theory of types). As a consequence,
the global singleton function x 7→ {x} cannot exist. However, restricting the
said function to certain sets is consistent with the theory, and such sets are
called strongly Cantorian sets.

In this talk, we will survey the properties of strongly Cantorian sets and show
their significance for the theory. In addition, we will explore their connection
with the notion of stratification.

Acknowledgments. This work is supported by Croatian Science Foundation
under the project HRZZ-IP-2024-05-3882.
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It is well-known that any first-order formula in classical logic is logically
equivalent to one in prenex form. Quantifier prefixes define fragments of first-
order logic, characterized by prenex formulas containing specific prefixes. Early
research identified some such fragments as having decidable satisfiability and
validity, while others were undecidable.

In 1928, P. Bernays and M. Schönfinkel proved the decidability for the
class of function-free sentences with prefixes ∃x̄∀ȳA(x̄, ȳ) (satisfiability) and
∀x̄∃ȳA(x̄, ȳ) (validity) (specifically, the set of sentences that, when written in
prenex normal form, have a prefix containing quantifiers and the matrix without
function symbols) [5].

In this talk we examine the decidability of the Bernays–Schönfinkel class
within Gödel logics. The argument relies on the availability of Skolemization
for prenex Gödel logics for validity, and general properties of prenex formulas
for satisfiability. Notably, Gödel logics differ from classical logic in that validity
and satisfiability are not dual.

Definition (Gödel logics): First-order Gödel logics are a family of many-
valued logics where the truth values set (known also as Gödel set) V is closed
subset of the full [0, 1] interval that includes both 0 and 1 given by the following
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evaluation function I on V

(1) I(⊥) = 0

(2) I(A ∧B) = min{I(A), I(B)}
(3) I(A ∨B) = max{I(A), I(B)}

(4) I(A ⊃ B) =

{
I(B) if I(A) > I(B),

1 if I(A) ≤ I(B).

(5) I(∀xA(x)) = inf{I(A(u)) u ∈ UI}
(6) I(∃xA(x)) = sup{I(A(u)) u ∈ UI}

For a truth value set V , a (possibly infinite) set Γ of formulas (1-)entails a
formula A if the interpretation I on V of A is 1 in case the interpretations of
all formulas in Γ are 1, i.e., Γ ⊩V A⇐⇒ (∀I,∀B ∈ Γ : I(B) = 1) → I(A) = 1.

As a generalization of classical satisfiability, we introduce the following con-
cepts: The formula in Gödel logic is valid if the formula evaluates to 1 under
every interpretation. The formula in Gödel logic is 1-satisfiable if there exists
at least one interpretation that assigns 1 to the formula.

In Gödel logics, valid prenex formulas can be sharpened to validity equivalent
purely existential formulas by Skolemization.

Lemma (Skolemization): For all prenex formulas Qx̄A(x̄) and all Gödel
logics G

Γ ⊩G Qx̄A(x̄) ⇐⇒ Γ ⊩G (Qx̄A(x̄))S

where Qx̄ is a quantifier prefix and A(x̄) is a quantifier-free formula.

Proof. It is sufficient to prove with A arbitrary and f a new function:

Γ ⊩G ∃x∀yA(x, y) ⇔ Γ ⊩G ∃xA(x, f(x)).

It follows then from induction. (⇒) The direction from left to right is obvious.
(⇐) For the other direction, if ⊮G ∃x∀yA(x, y) then for some interpretation I

sup{dc | I(∀yA(c, y)) = dc} ≤ d < 1.

Using the axiom of choice we can assign a value for every f(c) such that
I(A(c, f(c)) is in between dc and dc +

1−d
2 . As a consequence

sup{dc +
1− d

2
| I(A(c, f(c))) ≤ dc +

1− d

2
} ≤ d+

1− d

2
< 1

and thus Γ ⊮G ∃xA(x, f(x)).

Theorem: Validity in Berneys-Schönfinkel (BS) class is decidable for all
Gödel logics.

Proof. By Skolemization, validity reduces to checking purely existential formu-
las, allowing effective decidability.
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Corollary: 1) Herbrand’s theorem holds for existential formulas with con-
stants in all Gödel logics. 2) Infinitely-valued Gödel logics coincide regarding
validity within the Bernays–Schönfinkel class.

Note that 1) is not trivial as prenex formulas and consequently ∃-formulas
for countable Gödel logics are not r.e.[4].

Proposition: Prenex formulas in Gödel logics admit 1-satisfiability iff they
are classical saitisfiable.

Theorem: 1-satisfiability in Berneys-Schönfinkel class is decidable for all
Gödel logics.

Proof. Direct consequence from classical logic’s satisfiability being decidable, as
classical and Gödel logic 1-satisfiability coincide in this class.

All Gödel logics agree on the Bernays–Schönfinkel class regarding 1-satisfiability,
whereas only infinitely-valued Gödel logics coincide regarding validity. The
Bernays–Schönfinkel fragment of infinitely-valued Gödel logic is precisely the
intersection of corresponding fragments of finitely-valued Gödel logics for both
satisfiability and validity.

Acknowledgment
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It was observed in the 1990s, through the works of Murthy [12] and Griffin
[9], that the Curry-Howard correspondence can be extended to classical logic.
Since then, numerous calculi have been proposed to represent natural deduction
or Gentzen-style derivations in classical logic [1, 7, 11, 14, 16, 17]. Among
these, we focus on Parigot’s λµ-calculus [14] due to its simplicity and its close
resemblance to the λ-calculus [2]. Parigot’s system was dedicated to establish a
connection between logical calculi and natural deduction-style proofs in second-
order predicate logic.

The λµ-calculus can be viewed as an extension of the λ-calculus, incorpo-
rating classical variables (so-called µ-variables) in the calculus along with their
corresponding term formation and reduction rules. More precisely, our inves-
tigation focuses on de Groote’s version of the λµ-calculus [10], which relaxes
Parigot’s original formulation by allowing µ-abstractions to appear at arbitrary
positions within a term. This removes the restriction that a µ-abstraction must
immediately be followed by a µ-application.

In addition to the well-known β-reduction from the λ-calculus, the λµ-
calculus introduces several rules specific to classical logic. Namely, the µ-
reduction is concerned with the µ-redexes representing reasoning by reductio
ad absurdum, whereas its symmetric counterpart, the µ′-rule, is introduced for
the µ′-redexes. The µ′-rule is designed to facilitate the uniqueness of represen-
tation of data-particularly in the case of Church numerals-within the classical
logic setting [14, 13]. It also contains a number of simplification rules: the ρ-
and θ-rules, originally introduced by Parigot [15], and the ε-rule, introduced by
de Groote [10].

Parigot proved that the λµ-calculus is strongly normalizing [15]. Subse-
quently, it was shown-using methods formalizable within first-order arithmetic-
that strong normalization is also preserved in the untyped µµ′-calculus, and
that a similar result holds for the simply typed calculus based on the λµµ′-rule
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[4, 8]. However, the introduction of additional rules has a profound impact on
the proof-theoretic properties of the system. In particular, the inclusion of the
ρ- or ε-rules leads to the failure of strong normalization [3]. As demonstrated
in [5], considering the βµµ′ρθε-reduction rule, the weak normalization can be
recovered in the simply typed calculus.

In this talk, we present some existing results in this direction and explore
various possible methods for obtaining normalization properties, based on [5, 6].
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Nenad Stojanović3
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In this paper, we continue our research into the syntactic and semantic
properties of logical connectives and probability (v. [1], [2], [3], [4], [8]). Our
talk presents a combination of the proof–theoretic ideas of Gentzen and Prawitz
[12], Carnap’s and Popper’s probabilistic concept of a sentence (v. [5], [11]), and
Suppes’ ε–approach to probabilistic form of inference rules (v. [13], [14]).

Advantage of Suppes’ approach to probability of sentence is that arithmetic
concerning the probabilities is quite natural and enables to obtain very simple
and elegant inference rules. Suppes starts with the probability of a proposition
belonging to the interval [1−ε, 1], for a fixed small positive real ε, and proceeds
with inferring new propositions which probabilities belong to the intervals of
the form [1− nε, 1], for some natural number n.

We consider semantics, through soundness and completeness, as a neces-
sary justification and tool for better understanding of the syntax. On the other
side, the syntax presents a bridge from the theory to its application. In this
case, each well founded syntactic rule represents a reliable scheme for an algo-
rithmic step in a programm for calculating appropriate probability of a given
sentence. Consequently, the syntactic part of our logic NKprob(ε) can be
treated as a framework for a programm producing an output Am for any input
(Am1

1 , . . . , Amn
n ) (see also examples given in [4]). The denotation NKprob(ε)

come from NK — for Gentzen’s original natural deduction system for classical
propositional logic, prob — for probability, and ε — for Suppes’ ε–approach.

The basic form of formulae of our system is Am, with meaning that ’the
probability of A belongs to [1−mε, 1]’. An auxiliary form of formulae is A−m,
with meaning that ’the probability of A belongs to [0,mε], for m ∈ N’. The
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set of propositional formulae is build up inductively over a denumerable set of
propositional letters, two constants, ⊤ and ⊥, and the usual set of propositional
connectives {¬,∧,∨,→}.

The system NKprob(ε) consists of introduction (I⋆) and elimination (E⋆)
rules, for each propositional connective ⋆ ∈ {¬,∧,∨,→}, and some specific
rules concerning probability properties. For instance, the nature of implication
is covered by the rules:

(¬A)m Bn

(A→ B)min{m,n} (I →)
Am (A→ B)n

Bm+n
(E →)

Our perception of models for NKprob(ε) will be founded on basic prop-
erties of sentence probability as considered by Carnap, Popper, Leblance, van
Fraassen, Hailperin (v. [5], [6], [7], [9], [10], [11], [14]) and, finally, by Suppes
[13]:

(i) p(A) = 1, for each classical tautology A;
(ii) if A↔ B is a classical tautology, then p(A) = p(B), and
(iii) if p(A ∧B) = 0, then p(A ∨B) = p(A) + p(B).
We prove that our system NKprob(ε) is sound and complete with respect

to the presented Carnap–Popper type of semantics.
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[2] M. Boričić, Suppes–style sequent calculus for probability logic, Journal of
Logic and Computation, 27 (4), 2017, pp. 1157–1168.
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With the increasing size and structural richness of complex networks, the
identification of key nodes in a specific context becomes increasingly important
in order to understand, optimise and secure modelled systems. In our previous
works, we proposed the Semi-Local Integration Measure (SLI) and its directed
variant Directed Semi-Local Integration Measure (DSLI), centrality measures
for evaluating node integration [1, 3]. These measures have already been suc-
cessfully used in Natural Language Processing and have proven to be effective
in capturing nuanced local structural properties that are often not recognised
by traditional existing centrality measures [2].

In this new research phase, we are exploring a data-driven, AI-assisted ap-
proach to centrality by embedding SLI/DSLI in neural network architectures.
The goal is to develop adaptive centrality models that are able to generalise
node importance patterns across different graph topologies and tasks. By using
SLI/DSLI as a supervision component, we aim to combine mathematically inter-
pretable centrality formulations with the flexibility and adaptability of modern
machine learning algorithms. While SLI/DSLI measures are based on precise
and theory-driven definitions that reflect node integration, modern algorithms
provide the ability to learn task-specific patterns and adapt to the structure of
the specific complex network.

Our hybrid approach improves the transparency and interpretability of AI
models by integrating data-driven patterns that attempt to bridge the gap be-
tween traditional explainability and modern learning techniques. We expect
a context-aware evaluation of node roles and a way to integrate learned cen-
trality into various applications, such as influence detection in social networks,
anomaly detection in communication infrastructures, structural analysis of se-
mantic graphs in NLP, etc. This is a step towards AI systems that are not only
powerful, but also interpretable, explainable and adaptable to different tasks
and domains.
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Resilient systems are systems able to adapt to unexpected changes or adver-
sarial disruptions. Here we study the computational complexity of the formaliza-
tion of the time-bounded resilience problem for the class of η-simple progressing
planning scenarios, where, intuitively, it is simple to check that a system con-
figuration is critical, and only a bounded number of rules can be applied in a
single time step.

We show that, in the time-bounded model with n (adversarially chosen)
disruptions, the corresponding time-bounded resilience problem for this class of
systems is complete for the ΣP

2n+1 class of the polynomial hierarchy, PH.
We also consider the computational complexity of several related problems,

such as time-bounded realizability (ΣP
2 -complete) and time-bounded survivabil-

ity (DP-complete).
We also present two illustrative examples: the travel-planning example and

the production supply chain example. If time permits, we will discuss automated
experiments for time-bounded verification using the rewriting logic tool Maude.
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D. Dougherty, J. Meseguer, S. A. Mödersheim, and P. Rowe, eds., Pro-
tocols, Strands, and Logic. Springer LNCS Volume 13066, Springer-Verlag,
pp. 251 - 275, 2021.

[4] T. Ban Kirigin, J. Comer, M. Kanovich, A. Scedrov, and C. Talcott. Tech-
nical report: Time-Bounded Resilience. arXiv preprint arXiv:2401.05585,
2024.

18



How to extend the set-theoretic

vocabulary in a type-safe way?
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In set theory, it is customary to introduce new nonlogical (relation, function,
and constant) symbols all the time. We can’t even state all the axioms of ZF
in the same language, since (for example) for the statement of the Axiom of
infinity, we need a constant symbol for the empty set and a function symbol for
the set union.

This process of iteratively expanding the language and using it to define new
kinds of formulas (which then in turn define new constructs of the language)
is well-known, and utilized all the time in developing the foundations of math-
ematics. However, it is not type-safe: we can, at least in theory, apply any
function symbol to any terms, no matter what kind of object it denotes.

New Foundations was introduced by Quine in 1937 as a form of a simplified
version of Russell-Whitehead type theory. It can also serve as a foundation
for mathematics, but done in a type-safe way. Its types are simply natural
numbers (or integers), but it turns out to be quite enough to eliminate the
usual paradoxes (such as Russell’s).

In NF/NFU, we would like to do the same process of expanding the language,
but there is an additional complexity regarding stratifiability. While it is easy
to say when a formula in the basic language is stratified, it is harder to do so
when the formula contains other nonlogical symbols (besides =, ∈, and set).

We present one approach, based on signatures (tuples of type differences),
which gives us a clean way to generalize stratification conditions and to prove
that (up to some technical details regarding constant terms) stratifiability re-
mains the same, no matter how many new symbols we add to the language. We
will also present a working program in Python designed for expressing formulas
in such an extensible language.
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A set S in a computable metric space is semicomputable if

(i) its intersection with any closed ball is compact; and

(ii) it is possible to effectively enumerate all finite unions of basic open balls
which cover S ∩Bi, uniformly over rational closed balls Bi.

If, in addition, there is an effective procedure to enumerate all basic open balls
that intersect S, then S is said to be computable.

Topological properties can play a significant role in determining whether a
semicomputable set is computable. Specifically, if every semicomputable set
homeomorphic to a space A is computable, we say that A has computable type.
More generally, a topological pair (A,B), consisting of a space A and its sub-
space B, is said to have computable type if, whenever f : A → X is an em-
bedding into a computable metric space such that both f(A) and f(B) are
semicomputable, then f(A) is computable.

The study of computable type has traditionally focused on compact spaces,
particularly manifolds and simplicial complexes [3, 1]. However, more general
approaches have led to meaningful results in the noncompact setting as well.
For example, it was shown in [2] that any semicomputable 1-manifold in a
computable metric space is computable. This result was later extended to gen-
eralized graphs in [5]. Furthermore, in [4], it was proved that a semicomputable
manifold M of arbitrary dimension is computable if there exists a relatively
compact open subset U ⊆M such that M \ U is homeomorphic to Rn \ Bn.

In this talk, we begin with a survey of the techniques used to obtain the
aforementioned results for noncompact spaces. We then turn our attention to
the notion of pseudocompactification, introduced in [4], which enables us to apply
established results from the compact setting. Finally, we examine neighborhoods
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of infinity (that is, complements of compact subsets) in noncompact manifolds,
and show how their topological properties affect computable type. We prove
the following:

Theorem 1. Suppose S is a semicomputable set in a computable metric space
which contains a closed neighborhood of infinity homeomorphic to Q× [0, 1⟩ for
some compact space Q. If the cone C(Q) has local computable type, then S is
computable at infinity.

As a direct consequence, we get that the infinite cylinder S1×R (and Sn×R
in general) has computable type.

This talk is based on joint work with Zvonko Iljazović.
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Many significant mathematical discoveries initially came accompanied by
incorrect or incomplete proofs, famously exemplified by Euler’s first attempt at
solving the Basel problem [5], [3]. Such historical instances prompt two central
questions in mathematical proof theory:

1. If a proof is incomplete but intuitively reasonable, what is the minimal
additional information required to complete and validate it?

2. If a proof is reasonable yet incorrect, how can we systematically identify
a suitably weakened statement that can be correctly established through
a closely related argument?

These questions are inherently dual: an incomplete proof of a suitably weak-
ened statement, when completed, yields a valid proof of an implication towards
the originally intended result. This talk delves into formal logical frameworks
to precisely determine minimal or weakest preconditions necessary to rectify
proofs. Such weakest preconditions are understood as preconditions implied by
all other possible preconditions, representing the simplest means of ensuring the
correctness of a given argument.

In classical propositional logic, identifying weakest preconditions is straight-
forwardly achievable through truth tables; As the non-validity of a formula can
be identified with its incorrect proof: the minimal information to make, e.g.,
A∧B → A∧C valid is ¬(A∧B∧¬C) excluding the only line of the truth table
falsifying the formula. This means

¬(A ∧B ∧ ¬C) → (A ∧B → A ∧ C)
is a tautology.

However, first-order logic introduces significant complexities, including the
undecidability of determining weakest preconditions, as ”⊥ is the minimal in-
formation to make A valid” is equivalent to ”A is valid”. Furthermore, such a
weakest information might not exist. For example,
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∀x(A(p(x)) → A(x)) → A(0)

has, using Herbrand’s theorem, the validating premisesA(0), A(p(0)), A(p(p(0))),
. . . and A(pn+1(0)) is weaker then A(pn(0)). Consequently, analysis in first-
order logic requires examining specific incorrect proofs, often formulated within
a sequent calculus framework.

To address these complexities, we employ Hilbert’s epsilon calculus [2],[4],[1],
a formalism based on the replacement of ∃xA(x) by A(εxA(x)) and ∀xA(x) by
A(εx¬A(x)), enabling first-order proofs to be analyzed in a manner similar to
propositional logic. By systematically translating proofs into epsilon calculus,
we can leverage methods akin to propositional analysis to ascertain weakest
preconditions and correction strategies.

Example: The standard translation of ∃xA(x) ∧ ∀xB(x) is A(εxA(x)) ∧
B(εx¬B(x)).

In this talk we will systematically introduce and develop proof-theoretic tools
based on ε-calculus for analyzing and correcting flawed mathematical proofs.
Furthermore, we will discuss recent theoretical results demonstrating the ro-
bustness, or false-tolerance, of epsilon calculus, ensuring that even in cases of
minimal errors, useful computational information can still be extracted from
incorrect proofs.

As an example, we provide the following theorem.
Theorem: The algorithm of the extended first ε-theorem is false-tolerant:

if there is at most only one interpretation that falsifies the proof (i.e., one line
of the minimal truth table) then the same holds for the Herbrand disjunction
obtained after elimination of critical formulas.

Acknowledgment

The research reported in the paper is a joint work with Ao.Univ.Prof. Dr.
Matthias Baaz and is partly supported by FWF grant P 36571.

References

[1] Baaz, M. and Zach, R. Epsilon theorems in intermediate logics. The Journal
of Symbolic Logic, 87(2),682–720, 2022.

[2] Hilbert, D. and Bernays, P. . Grundlagen der Mathematik. 2, 1939.

[3] Lecat,M. Erreurs de mathématiciens des origines à nos jours. Castaigne,
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Distributed machine learning setting where clients collaboratively train and
communicate a model while keeping the training data decentralised and local is
called Federated Learning (FL). FL can be centralised or decentralised, where
the collaborative model training is under the coordination of a central server, or
a peer-to-peer network, respectively. The correct orchestration of FL systems is
challenging. In FL, communication protocols follow key patterns that must be
expressed for proper modelling and verification.

In this talk, we present two approaches to formal verification of the correct-
ness of generic FL algorithms:

• untyped calculus and model checking, presented in [1],

• typed calculus and correctness-by-construction, presented in [2].

Untyped calculus and model checking, [1] FL algorithms are modelled
in the untyped calculus Communication Sequential Processes (CSP). Correct-
ness of FL algorithms and required properties such as deadlock-freedom and
termination are verified by applying the model checker Process Analysis Toolkit
(PAT).

Typed calculus and correctness-by-construction, [2] FL algorithms are
modelled in an extension of Multiparty Session Types system (MPSTs), which
is specially developed for this purpose. As a novelty MPSTs supports in-
put/output operations directed towards multiple participants at the same time.

∗Partially funded by the European Union, project TaRDIS no. 101093006.
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The MPSTs is proven to enjoy safety, deadlock-freedom, liveness, and session
fidelity properties. FL algorithms are modelled in MPSTs, which paves the way
for more scalable and efficient techniques for verification and analysis of dis-
tributed machine learning algorithms based on correctness-by-construction.

This talk is based on joint work with Miodrag Djukić, Ivan Kaštelan, Miroslav
Popović, Marko Popović, Ivan Prokić, Simona Prokić, Alceste Scalas and Nobuko
Yoshida.
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I will present the theory of orthologic, and its applications to predictable
verification and theorem proving.

1 Orthologic

Specialized, reliable, and efficient building blocks are indispensable in scaling
automated reasoning software. Program verifiers, SMT solvers, proof assistants,
and automated theorem provers use them to tackle the various theories and
subproblems that comprise a logical statement.

One such fragment of particular interest is propositional logic. Despite
progress in SAT solvers, solving satisfiability or validity of propositional for-
mulas remains a major challenge to scalability of decision procedures. An al-
ternative approach to heuristics is orthologic-based reasoning. Orthologic is
a non-distributive generalization of classical propositional logic which admits
O(n2) validity checking and normalization algorithms [1, 2, 7]. Orthologic of-
fers a trade-off: it sacrifices completeness (with respect to classical semantics)
in exchange for guaranteed efficiency and predictability. The algebra underlying
orthologic is an ortholattice, whose laws are presented in the following table:

V1: x ∨ y = y ∨ x V1’: x ∧ y = y ∧ x
V2: x ∨ (y ∨ z) = (x ∨ y) ∨ z V2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z
V3: x ∨ x = x V3’: x ∧ x = x
V4: x ∨ 1 = 1 V4’: x ∧ 0 = 0
V5: x ∨ 0 = x V5’: x ∧ 1 = x
V6: ¬¬x = x
V7: x ∨ ¬x = 1 V7’: x ∧ ¬x = 0
V8: ¬(x ∨ y) = ¬x ∧ ¬y V8’: ¬(x ∧ y) = ¬x ∨ ¬y
V9: x ∨ (x ∧ y) = x V9’: x ∧ (x ∨ y) = x

Key properties of orthologic are as follows:

• Orthologic admits a quadratic-time normalization algorithm, mapping
equivalent formulas to one formula of minimum size [2].
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• Orthologic admits a proof system, supporting arbitrary axioms, with cut
elimination and subformula property. Proof search has complexityO(n2m),
where n is the size of the formulas and m the number of axioms [7].

• Normalization and proof search still hold with the same complexity in th
presence of uninterpreted monotonic function symbols (not yet published).

• Orthologic can be extended with predicates, and is classicaly complete for
classes of formulas such as Horn clauses and Datalog programs [7].

• Orthologic admits efficiently computable interpolants [6].

2 Results

Orthologic admits a natural sequent-based proof system, which consists in re-
stricting the classical sequent calculus so that at any given time a sequent never
contains more than two (different) formulas. This system admits cut elimina-
tion, which we showed generalizes accordingly when a set of non-logical axioms
is allowed as the leaves of the proof. Using this property, orthologic with ar-
bitrary axioms is decidable in time O(n2m). We have verified this decision
procedure in the Rocq proof assistant [8].

Orthologic (with axioms) is classically complete with respect to Horn clauses
and other relevant classes of formulas. Orthologic can also be extended to sup-
port first-order variables and predicate symbols, similarly as in classical effec-
tively propositional logic (EPR) and Datalog. In fact, orthologic is complete for
Datalog programs and can be used as a proper extension of Datalog. Orthologic
also admits the interpolation property, i.e. for two formulas ϕ, ψ, there exists
γ containing only the shared variables of ϕ and ψ, and such that ϕ ≤ γ ≤ ψ.
Moreover, unlike in classical logic, such interpolants can always be computed
efficiently. This makes orthologic promising for interpolation model checking.

In [2], we presented a quadratic-time normalization procedure for orthologic.
We implemented it in the Stainless program verifier[9], where it serves two
purposes: first, it reduces the size of verification conditions, leading to faster
solving. Sometimes, formulas are even found to be true without needing to
be sent to the SMT solver. Second, caching normalized formulas increases the
cache hit ratio of verification conditions.

Another application of orthologic is as the basis of a type system with subtyp-
ing. union and disjunction types have been adopted by popular languages such
as Scala and Typescript, but deciding the subtyping relation remains a prac-
tical challenge. Type checkers are often incomplete, cannot effectively reason
with assumptions, and sometimes rely on unsound simplifications. Consider-
ing types as members of an ortholattice allows to decide reliably and efficiently
subtyping relations. Moreover, orthologic normalization and proof search proce-
dure extend in the presence of monotonic and antimonotonic function symbols,
corresponding to covariant and contravariant type constructors. Supporting as-
sumptions then allow us to represent features of type systems such as record
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types, f -bounded and constrained polymorphism, recursive types, inheritance,
complement types, and more.

3 Orthologic in a Proof Assistant: Lisa

The initial motivation behind orthologic was the following: In a formal proof
system, many intuitively obvious transformations (for example, swapping the
order of disjuncts) must be explicitly proven. This makes proofs longer, less
efficient, and frustrating to write. Orthologic is the answer to the question
“Can we find an efficient algorithm with clear completeness guarantees that
solves automatically many of these obvious transformations?”.

The system in question is Lisa [5], a proof assistant made from scratch
and based of first-order logic and set theory. This is most generally accepted
among mathematicians as the foundation of mathematics, offers a lot of power
and expressibility, and has been stable and without hints of inconsistencies for
a hundred years. Hence was created Lisa, with a focus on 6 principles for
proof systems: trust, efficiency, predictability, usability, interoperability, and
programmability. For example, the development of orthologic was motivated
by the need to find the best compromise between efficiency, predictability, and
usability. In practice, orthologic simplification allows for simpler and shorter
proofs and tactics.

Programmability is a key focus of Lisa compared to most older proof assis-
tants. Lisa has a unified implementation, proof writing, and tactic language
(Scala) and comes with a domain-specific language (DSL) to write proofs in a
natural way, with a “have statement by tactic” syntax. Such proof scripts using
the DSL are fully executable code, computing a kernel proof. Moreover, the
proof DSL can be used when writing tactics, and can freely be mixed with regu-
lar programming constructs and with the entire standard libraries of Scala and
Java. Using this DSL, a variety of proof-producing decision procedures and for-
malized theorems have been implemented. One such tactic, called tautology,
decides propositional tautologies by alternating between computing orthologic
normalization and branching on a literal. In practice, this yields a significantly
better algorithm than doing a simplification with constant folding

In [4], we describe how to mechanize HOL-style proofs into first-order set the-
ory, supporting functions and sets as simple types with top-level polymorphism,
in the style of Hindley-Milner. The technical difficulties in the representation
of λ-terms in strict first-order logic lead to the development of λFOL, a syn-
tactic extension of first-order logic with some higher-order expressions. λFOL
is closer to vernacular mathematics, allowing expressions such as set compre-
hensions ({x ∈ N | ∃y ∈ N.x = y + y}), but otherwise fundamentally stays
first-order. λFOL, alongside sequent calculus and orthologic, now make the
foundation of Lisa. Extending the type system to support union, negation and
interesection types with orthologic semantics, as described above, is ongoing
work.
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Interpretability logic extends provability logic, which is a modal treatment
of Gödel’s provability predicate. Its language has an additional binary modality,
which corresponds to the notion of relative interpretability between first-order
arithmetical theories. Although many papers on the semantics of interpretabil-
ity logics have appeared in the recent years, sequent systems for interpretability
logics were not much investigated. One appeared in [3], but it requires a com-
plicated proof of the cut elimination.

In recent decades a non-wellfounded proof theory has gained prominence. It
results from allowing proofs to have infinite height. In this talk, we will present
the wellfounded sequent system GIL and non-wellfounded sequent calculus G∞IL
for the interpretability logic IL that we developed in [1]. Finally, we will show
how to prove cut elimination for these systems in much simpler way. In order
to do that we will use the method presented in [2].
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In this talk we explore, in computable metric spaces, circularly chainable
continua which are not chainable. Given such a continuum K, if we endow
it with semicomputability, its computability follows. Conditions under which
semicomputability implies computability, typically topological, are extensively
studied in the literature [Ilj]. When a semicomputable set K is not computable,
it is natural to explore approximate approaches; under certain conditions such
a set can be approximated by computable subsets [IP]. Two general questions
motivate this work. Given a (semi)computable continuum K,

1. Under which conditions does K contain computable subcontinua?

2. What can be said about the existence of computable points inside desig-
nated subsets of K?

The main result establishes that, given two points on a semicomputable, cir-
cularly chainable, but non-chainable continuum K, one can approximate them
by computable points such that there exists a computable subcontinuum con-
necting these approximations. As a consequence, given disjoint computably
enumerable open sets U and V intersected by K, the intersection of K with the
complement of their union necessarily contains a computable point, provided
that this intersection is totally disconnected.
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We examine effective separating sequences on a metric space and, in partic-
ular, conditions under which on a metric space every two such sequences are
equivalent up to an isometry. Such a metric space is called computably categor-
ical. We prove that an effectively compact metric space (X, d) is computably
categorical if the space of all isometries of (X, d) has computable type. Using
this, we prove the following result.

Theorem 1 Every effectively compact subspace of Euclidean space is computably
categorical.
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Let (X, d) be a metric space and S ⊆ X. An isometry of S is a function
f : S → S such that for all x, y ∈ S,

d(f(x), f(y)) = d(x, y).

If S is compact it is well known that every isometry of S is bijective. Define,

F (S) = {x ∈ S | f(x) = x, for all isometries f : S → S},

the set of common fixed points of all isometries of S. In this work, we focus on
compact subsets of Rn equipped with standard Euclidean metric, and study the
computability of the set F (S). It follows from theorem of Brodskii and Milman
([3]) that if S ⊆ Rn is convex and compact, then F (S) is nonempty. Our main
result establishes that if S is a computable and convex subset of Rn, then the set
F (S) is computable. We also provide an example of a non-convex computable
set S such that F (S) is semicomputable, but contains no computable point.
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of points under the isometry group, Annals of Pure and Applied Logic,
174(2):134, 2023.
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1 Introduction

In this presentation, based on papers [7, 1, 8] (written in colaboration with
several coauthors from West University of Timişoara, University of California
San Diego and Universitat Politécnica de Catalunya), as well as on more re-
cent, unpublished, research, we discuss the use of combinatorial statements as
a source of interesting candidate propositional formulas in proof complexity. An
important open problem in this area is to find ”natural” candidates for sepa-
rating the Frege and extended Frege propositional proof systems (see [9] for an
in-depth presentation). We had originally conjectured that the so-called Kneser-
Lovász theorem (see e.g. [10]) is such a candidate. But in [1] we disproved this
conjecture, proving the existence of quasi-polynomial size Frege proofs for the
Kneser-Lovász theorem. The strategy employed in this proof was abstracted
and generalized in [8], allowing us to prove the existence of polynomial (or
quasi-polynomial, in some cases) Frege and extended Frege proofs for a variety
of propositional encodings of several combinatorial principles, such as

- Schrijver’s theorem [11], a generalization of the Kneser-Lovász theorem1

- vertex coloring, dual graph coloring, edge clique cover, hitting set.

- the Arrow and Gibbard-Satterthwaite theorems from the theory of social
choice.

In the present talk:

1For some recent applications of our proof strategy for this result see [4]
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- We aim to explain some of the technical details of our results in [8], specifi-
cally how the concepts of data reduction/kernelization from parameterized
complexity [2]

- Time permitting, we will present subsequent research directions/work:

1. First, the application of a different technique from the theory of pa-
rameterized complexity, that of iterative compression [3].

2. Second, the applications of our techniques to proof systems other
than Frege and extended Frege. Our main target is the class of
proof systems based on clause redundancy recently introduced in the
SAT solving community [5, 6], specifically the proof system SPR−

[12]. These are proof systems for which the logical equivalence of
formulas generated through the proof is not guaranteed. Instead,
these formulas are only equisatisfiable with original formulas. Such
proof systems have important practical advantages, and the issue of
guaranteeing efficient proofs in them is a practically important one.
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We investigate the possibility of adapting large language models (LLMs)
to generate high-quality text embeddings in Croatian, a low-resource language.
Text embeddings are vector representations of text used in retrieval tasks, where
the goal is to find semantically similar documents based on vector distances
rather than relying on exact keyword matching. Therefore, generating qual-
ity text embeddings is a key component of non-keyword-based text retrieval
systems.

In our study, we fine-tune several LLMs such as Mistral, LLaMA, and
Gemma, as well as embedding models, including BGE—using parameter-efficient
fine-tuning. We identify BGE-HR, our adapted version of BGE, as the best-
performing model. Rather than focusing solely on introducing a new model,
we conduct a systematic analysis of the factors that influence its successful
adaptation to low-resource languages. An important aspect of this analysis
involves evaluating the ability of base LLMs to generate coherent text in Croa-
tian, including how effectively they segment text into smaller units (tokens) for
subsequent processing.

To further assess model generalizability, we introduce a new evaluation
dataset derived from commonly asked questions found on the Croatian web.
This enables us to benchmark performance on realistic text retrieval tasks that
differ from the dataset used for fine-tuning. Our findings suggest that choosing a
stronger base model is generally more effective than investing substantial effort
in fine-tuning a weaker one. We also find that some smaller, publicly available
multilingual embedding models, generalize well on the new dataset, offering a
practical solution when computational resources for fine-tuning are limited.
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1 Introduction

Amalgamation is explored in this talk within classes of involutive commuta-
tive residuated lattices that are non-divisible, non-integral, and non-idempotent.
Several classes of algebras significant to us are designated by a distinctive nota-
tion:

Ac the class of abelian o-groups
I the class of involutive FLe-algebras
S the class of odd or even idempotent-symmetric involutive FLe-algebras

Adjunct to I,

- the superscript c means restriction to totally-ordered algebras,

- the superscript sl means restriction to semilinear algebras,

- the subscript o means restriction to odd algebras,

- the subscript e means restriction to even algebras,

- the subscript ei means restriction to even algebras having an idempotent
falsum constant,

- the subscript en means restriction to even algebras having a non-idempotent
falsum constant,

When multiple letters appear in the subscript, they denote the union of the
corresponding classes. For instance Sc

oei
refers to the class of idempotent-

symmetric involutive FLe-chains which are either odd or even with an idem-
potent falsum constant.

First we delve into the Amalgamation Property within subclasses of Icoe. We
show that several subclasses of these structures fail to satisfy the Amalgama-
tion Property (Theorem 2.1), including the classes of odd and even ones. This
failure stems from the same underlying reason as in the case of discrete linearly
ordered abelian groups with positive normal homomorphisms [3]. Conversely,
it is proven that three subclasses of them exclusively comprising algebras that
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are idempotent-symmetric possess the Amalgamation Property (Theorem 2.2),
albeit fail the Strong Amalgamation Property (Theorem 2.3). The failure of
the Strong Amalgamation Property in these subclasses can be attributed to the
same underlying reason observed in the class of linearly ordered abelian groups
with positive homomorphisms [1].

Then we shift our focus from these classes of chains to the semilinear varieties
of FLe-algebras that they generate. Our goal is to transfer the Amalgamation
Property, or its failure, from the specific classes of chains to the generated va-
rieties. We conclude that every variety of semilinear involutive commutative
(pointed) residuated lattices that includes the variety of odd semilinear com-
mutative residuated lattices fails the Amalgamation Property (Theorem 3.1).
This result strengthens a recent proof by W. Fussner and S. Santschi, which
established that the variety of semilinear involutive commutative residuated
lattices lacks the Amalgamation Property [2, Theorem 5.2]. Furthermore, we
demonstrate that the varieties of idempotent-symmetric, semilinear, odd invo-
lutive residuated lattices, as well as idempotent-symmetric, semilinear, odd or
even involutive residuated lattices, exhibit the Transferable Injections Property
(Theorem 3.2), a strengthening of the Amalgamation Property.

2 Amalgamation in classes of Icoe

Theorem 2.1. The classes Ice, Icei , Icen , along with every class of involutive
FLe-chains which contains Ico, fail the Amalgamation Property.

Theorem 2.2. The classes Sc
o, Sc

e, and Sc
oe each satisfy the Amalgamation

Property.

Theorem 2.3. The classes Sc
o, S

c
e, and Sc

oe do not satisfy the Strong Amal-
gamation Property.

3 Amalgamation in the generated semilinear va-
rieties

Theorem 3.1. Every variety of semilinear involutive commutative (pointed)
residuated lattices that includes the variety of odd semilinear commutative resid-
uated lattices fails the Amalgamation Property.

Theorem 3.2. The varieties Ssl
o and V (Sc

e) have the Transferable Injections
Property.

4 Techniques

The core principle of our approach relies on leveraging the intrinsic layer group
decomposition of the algebras in Icoe [4] and an associated categorical equiva-
lence [5]. This strategic direct system decomposition facilitates the independent
execution of amalgamation within each distinct layer. Subsequently, these layer-
wise amalgams are leveraged to construct the overall amalgam of the algebras
via the functor detailed in [5] (see Fig. 1).
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G(Ỹ )

t

G(X)

t

G(X)

u

G(X)

v

G(X)

w

ι̃2,t

ι̃2,u

µ2,t

µ1,c

ι̃1,t

ι̃1,w

Figure 1: Brief visual illustration of the main constructions: “Layerwise” amal-
gamation in Ac (right), and the corresponding amalgamation in Sc

oe (left).

As an example, proving Theorem 4.1 was necessary to convert the cyan direct
system into the brown one. Additionally, several techniques for embedding
direct systems into those over larger index sets were developed to construct the
embeddings shown in Fig. 1.

Theorem 4.1. For any direct system ⟨Lu, ςu→v⟩κ of torsion-free partially or-
dered abelian groups over an arbitrary chain κ, there exists a direct system
⟨Ĝu, ςu→v⟩κ of abelian o-groups. In this system the abelian group reducts of the
Lu’s and the transitions remain unchanged, while, for every u ∈ κ, the ordering
relation of Ĝu is an extension of the ordering relation of Lu.
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The Lambek calculus, originally introduced for mathematical modelling of
natural language syntax [1], is now considered as a basic substructural log-
ical system. Namely, the sequent-style formulation of the Lambek calculus
uses basically the same logical rules as for intuitionistic logic, but lacks the
structural rules: contraction, weakening, and permutation. The only implicit
structural rule is associativity, which is removed in the even more restrictive
non-associative Lambek calculus. In the absence of contraction, the Lambek
calculus enjoys bounded cut-free proof search, and therefore it is algorithmi-
cally decidable, and so are many of its extensions with additional connectives.
In this talk, we shall discuss two unary operations which, being added to the
Lambek calculus, attack its decidability and yield interesting complexity results.

The first operation is the exponential, coming from Girard’s [2] linear logic.
Under the exponential, structural rules are allowed, which (in the associative
case) leads to undecidability [3]. A more fine-grained control of structural rules
is obtained by considering families of subexponentials [4, 5, 6]. Subexponential
modalities have some yet underexplored similarity to other ways of structural
control in the (non-associative) Lambek calculus, including multi-modal sys-
tems [7] and the Lambek calculus with brackets [8].

The second operation we consider is iteration, or Kleene star. One of its
natural axiomatisations is infinitary and yields a Π0

1-complete logic [9]. In the
non-associative case, iteration is replaced by so-called iterative divisions [10].

Even more intriguingly, a combination of (sub)exponentials and Kleene star
gives rise to extensions of the Lambek calculus whose complexity rises up to
Π1

1-completeness, with a properly hyperarithmetical Σ0
ωω -complete fragment in

between [11, 12].
In this talk, we shall give a survey on algorithmic and other properties

of extensions of the Lambek calculus with (sub)exponentials and Kleene star
(mostly in its infinitary form), from well-known old results up to new ones.
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Interpretability logic IL, introduced by Visser [4], and conservativity logic CL,
introduced by Ignatiev [2], are extensions of provability logic GL with binary
modal operator �. One of the most well-known semantics for IL and CL is
the Veltman semantics for which IL and CL are complete, but not strongly
complete.

Iwata and Kurahashi [3] introduced topological semantics for IL andCL that
corresponds to lesser known Visser semantics, sometimes also called simplified
Veltman semantics. They also proved topological strong completeness of IL,
CL and some of their extensions.

In this talk, we introduce polytopological spaces and topological semantics
for IL and CL based on them and show that it corresponds to Veltman seman-
tics.
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Inquisitive logic is a generalization of classical logic that can express ques-
tions. Its language extends the language of classical logic by adding a connective

⪕ , called inquisitive disjunction, which allows us to express formulas that rep-
resent questions. Since questions cannot simply be true or false, semantics is
defined via a relation between sets of worlds and formulas, rather than between
individual worlds and formulas (cf. [3] and [4]).

A natural generalization of basic modal logic is inquisitive modal logic InqML.
Its language is based on the modal operator ⊞, called window, which plays a
similar role to the modal operator 2 in basic modal logic. Formulas of InqML
are interpreted over models in which each world w is associated with a set of
sets of worlds Σ(w), satisfying a downward closure condition: if s ∈ Σ(w) and
t ⊆ s, then t ∈ Σ(w).

In [1] the logic InqML was generalized to inquisitive neighborhood logic
InqNL (also cf. [2]). The language of InqNL is based on a binary modal operator
⇛, called yields, while the formulas of InqNL are interpreted over models in
which a downward closure condition is not required.

In this talk, we first show that inquisitive neighborhood logic has the finite
model property. We use two well-known techniques: the selection method and
the filtration method (cf. [6, 5] for their application in InqML). As a consequence
of the finite model property, we show that the logic InqNL is decidable.
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Maude and its formal tools support ten different symbolic computation fea-
tures. This talk will focus on one of them, namely, narrowing-based model
checking based on symbolic states described by constrained patterns, as well
as its combination with inductive theorem proving in a novel style of deduc-
tive model checking. This will illustrate how Maude’s symbolic features can be
used to model check modal logic properties of infinite-state systems specificed
as rewrite theories in Maude.
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The 1985 Tucson conference Categorial Grammars and Natural Language
Structures was a key event in the revival of Lambek-style categorial type logics.
Forty years later, a number of variations on the original Syntactic Calculus have
been introduced, motivated by logical and/or linguistic considerations. For the
application to natural language grammars, these exended calculi generally rely
on a combination with Montague’s view on the syntax-semantics interface as a
structure-preserving map relating types and proofs of a syntactic source calculus
to their counterparts in a calculus for meaning assembly. The Lambek-Van
Benthem calculus, i.e. Lambek Calculus with Permutation, in retrospect MILL,
has been an obvious choice for this semantic target calculus.

In natural languages, one easily finds cases of ostensible mismatches between
the composition of form and meaning. I compare the strengths and weaknesses
of two extensions of Lambek Calculus that purport to address these mismatches.

The first extension adds unary type-forming operations ♢,2 (‘modalities’)
to the binary operations /,⊗, \ of Lambek Calculus. Residuation principles
hold together both the 1-ary and 2-ary families. A powerful feature of the
unary operations is their ability to replace global structural rules of Associa-
tivity/Commutativity by controlled versions, thus avoiding overgeneration of
the syntactic source calculus. A more problematic aspect, especially of multi-
modal generalisations ♢i,2i, is the fact that they allow for the formulation of
construction-specific structural rules. In Lambek’s original setup, a grammar is
the combination of a universal type logic and a language specific lexicon. With
construction-specific rules, this attractive property is lost.

In the second part of the talk I report on joint work with Bernardi, Kurton-
ina, Moot, Bastenhof, Greco and others on Grishin’s generalisation of Lambek
calculus which introduces dually residuated operations ⊕,⊘,; (coproduct, right
and left difference) in addition to ⊗, \, / (product, left and right implication),
and possibly interaction principles relating these two families (linear distributiv-
ities). The syntactic front end now takes the form of a focused display sequent
calculus where formula polarities restrict the applicability of inference rules. The
target calculus is MILL⊗,·⊥ with multiplicative conjunction and restricted lin-
ear implication · ⊸⊥ w.r.t. a response type ⊥. The Lambek-Grishin approach
avoids complications of the syntactic source calculus that are motivated solely
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by semantic considerations. Different scope construals of generalized quantifier
expressions (‘everyone’, ‘nobody’, ‘some politician’, etc) are a case in point. On
the downside, the generality of the (dual) residuation principles makes it diffi-
cult to limit the combinatorial possibilities of scope construal to what is actually
observed in natural language semantics.
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Kleene algebras were introduced by Kleene [4] as an axiomatization of regular
events, with the intended application domain initially being biological systems.
Conway, Parikh, Red’ko, Salomaa, and others continued this investigation (see
for instance [1, 7, 8, 9]), and Kozen [5] provided a first-order axiomatization. The
standard interpretation of Kleene algebras in computer science regards elements
as programs and algebraic operations as control structure, but numerous other
interpretations have proved fruitful.

Because Kleene algebras are analogous to rings, it is natural to consider
Kleene modules—more particularly left-, right-, and bimodules—and indeed
this has been done [2], though as with Kleene algebras the axiomatization is not
fully agreed-upon. We make some observations about Kleene modules which
we expect will be useful in further investigations. In ring theory the Morita
category is of great interest, because Morita equivalence (defined as isomorphism
in the Morita category) provides a precise sense in which two rings can have
“the same” representation theory (note that representations of a ring are, in
particular, modules). Here the Morita category is the category of rings with
bimodules as morphisms and tensor product of bimodules as composition. This
is an enrichment of the usual category of rings, because each homomorphism
between rings induces a unique bimodule. Morita equivalence for semirings
has been previously considered [3], but we are not aware of applications to
Kleene algebras. This is where we make our contribution. The category of
Kleene bimodules has tensor products and hence there is a Morita category of
Kleene algebras. Moreover, the basic properties of the classical Morita category
continue to hold for the Kleene-Morita category, and in particular if Kleene
algebras K and S are Morita-equivalent then one is a matrix algebra over the
other of a particularly simple form, identical to the situation for rings. This takes
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on additional significance in the context of Kleene algebras and automata, for
automata are matrices over Kleene algebras, and we see that Morita-equivalent
Kleene algebras have equivalent categories of automata.

Turning to more specific (potential) applications, propositional dynamic
logic and many of its variants induce Kleene modules over a Boolean algebra via
the Lindenbaum-Tarski algebra of the logic, and Morita-equivalent Kleene alge-
bras have equivalent categories of modules and hence yield equivalent algebraic
semantics for propositional dynamic logic over a fixed Boolea algebra.

It is a general fact that, provided the scalars are the same on both sides, a
bimodule over a ring can be extended to a ring via the tensor algebra construc-
tion. We observe that this carries over to Kleene algebras, with the asterate
being added by taking the *-completion of the tensor algebra, and call the re-
sult a tensor Kleene algebra. Hence given a Kleene bimodule which is a Boolean
algebra, one can canonically construct a Kleene algebra with tests—as defined
by Kozen [6]—by extending this bimodule to its tensor Kleene algebra. Unfor-
tunately this does not seem to be generally applicable to Lindenbaum-Tarski
algebras because they are not naturally Kleene bimodules unless the underlying
Kleene algebra is commutative. Nevertheless, the tensor Kleene algebra con-
struction shows great flexibility with respect to the underlying logic, and so
the challenge of devising appropriate right actions on Lindenbaum-Tarski alge-
bras for dynamic logics becomes more urgent. To illustrate this flexibility, note
that if we start with a Kleene bimodule which is a Heyting algebra, then the
tensor Kleene algebra construction yields an analogue of a Kleene algebra with
tests where the tests take values in a Heyting algebra. Since Heyting algebras
provide algebraic semantics for constructive logic this could be very useful for
modelling programs which may not terminate. Moreover there is a great variety
of extra structure with which Kleene bimodules can be endowed, for instance
MV algebras to reason about multiple truth values in database systems or for
fuzzy reasoning about continuous systems, or orthomodular lattices to reason
about quantum algorithms. The possibilities are endless and we are excited to
continue exploring them.
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Interpretability logic IL extends provability logic GL with a new binary
operator ▷. One of the most notable semantics for IL is Veltman semantics
(see [3]), which extends Kripke frames with a family of relations {Sw : w ∈W}
satisfying some properties.

It is known that the logic IL is complete with respect to Veltman semantics,
but same cannot be said about its extensions, some of which have been proven
to be incomplete (see [2]).

In this talk, we will define a new class of boolean algebras, which may be
used to model interpretability logics. These algebras extend modal algebras (see
e.g. [1]) in a natural way and may be considered to be generalizations of Veltman
frames. Additionally, any consistent extension of IL is sound and complete with
respect to this semantics.
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Goedel’s ontological proof

Zvonimir Šikić

Kurt Goedel worked for years on his ontological proof. He showed it for the
first time to Dana Scott in early 1970. Fearing that his end was near, he wanted
to make sure that what he proved will not disappear with him. In August 1970,
when he felt significantly better, he said to Oscar Morgenstern that he hesitated
to publish the proof, although he was satisfied with it, for fear that people would
think he believed in God - because he was only logically investigating whether
such a proof is possible with appropriate axiomatization. We present Goedel’s
axiomatization and the proof itself, and look critically at his axioms. We also
present two axiomatizations that bring gods closer to the gods worshiped by
existing religions.
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Cyberphysical systems interact with their environment in complex ways.
In addition to exchanging information with other systems, they affect and are
affected by their physical / natural environment. Their components run con-
currently and may be physically distributed, participating in both synchronous
and asynchronous interactions.

Modeling interactions of a system with its environment presents a special
challenge in open cyberphysical systems where the environment is nature. Ex-
isting approaches typically model the environment as yet another actor or com-
ponent in the system. However, in cases of physical interactions, the unpre-
dictability of this environment and the complexity of the physics involved means
that “environment as a component” may not be a suitable approach.

Concurrent Rules Machines (CRMs) is a model for formal specification and
analysis of open, distributed cyberphysical systems [1]. The CRM model makes
interaction with the environment explicit and offers an algebra of composition
and decomposition for construction and analysis of systems through their con-
stituent components. Systematic and automatic verification of properties of
systems modeled as CRMs poses a significant challenge. The mathematical pre-
sentation of the CRM semantics suggests a natural symbolic representation as
a basis to model the inherently continuous properties of physics, the discrete
nature of control actions, and representing environment effects.

In this talk we review the structure and operational semantics of the Con-
current Rules Machine (CRM) model and its algebra. We also describe symbolic
execution as a means of reasoning about behaviors of CRM models. A symbolic
execution represents possibly infinitely many executions and can focus on envi-
ronments meeting requirements such as physically reasonable actions. Symbolic
execution is sound, and is complete for a natural class of CRMs. We illustrate
CRM concepts with a collection of simple cyber-physical system examples.
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Anadolu University
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On the disjunctive reading of multiple-conclusion consequence relations, a set
of conclusions Y is said to follow from a set X of premises if at least one formula
in Y is true whenever all formulae in X are true. Many properties of disjunctive
multiple-conclusion logics are known. (Smiley [4] is the classic monograph on
the subject. See also [5] for an explicit characterization theorem).

On the conjunctive reading of multiple-conclusion consequence relations, a
set of formulas Y is said to follow from a set X of premises if all formulae
in Y are true whenever all formulae in X are true. We consider classical and
various non-classical (mainly three-valued and intuitionistic logics) conjunctive
multiple-conclusion logics. After a brief discussion of the semantic characteriza-
tion of conjunctive multiple-conclusion logics, we present sequent-style natural
deduction systems for them. Finally, we deal with the problem of completeness
for the systems considered.

The natural deduction system for classical conjunctive multiple-conclusion
logic is based on a generalization of the sequent calculus in [2]. For the natural
deduction system for conjunctive 3-valued multiple-conclusion logic we gener-
alize the natural deduction system presented in [1]. To develop our system of
natural deduction for conjunctive multiple-conclusion intuitionistic logic we use
the idea presented by De Paiva and Pereira who [3] use the idea of indexing
formulas to keep track of dependency of conclusions on premises.
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The notion of categorial grammars is a logical formalism for the represen-
tation of natural and synthetic languages. AB-grammars (named after K. Aj-
dukiewicz and Y. Bar-Hillel) were the first variant of categorial grammars, dat-
ing back to Ajdukiewicz’s work [1] from 1935. In its modern form, this concept
appears in Bar-Hillel’s work [2]. Later, in the work [3], the fundamental proper-
ties of the formalism were established, one of which being the equality between
the class of generated languages and the class of context-free languages without
the empty word. This formalism plays a key role, since most other categorial
grammars are its extensions through the addition of new operations and rules.

In categorial grammars, each symbol of the alphabet Σ is assigned an arbi-
trary number of categories, constructed from a certain set of “primitive” ones
using two operations — right and left division. A word belongs to the generated
language if there exists a choice of categories such that the corresponding string
reduces to some chosen resulting category. Consider the phrase: “Ivan meets
Maria”. The syntactic units “Ivan” and “Maria” are assigned the type of noun
phrase np. The verb “meets” is assigned the type (np\(S/np)), where S is the
type of a well-formed sentence. Thus, for the words in this phrase, there exists
a type assignment np; (np\(S/np));np such that the corresponding implication
is derived: np; (np\(S/np));np⇒ S.

In most variants of categorial grammars, a single element of the alphabet
Σ may be assigned multiple distinct types. From a linguistic perspective, this
property corresponds to the phenomenon of homonymy. Consider the sentence
“A bear can bear a bear”. In this sentence, the word “bear” must be assigned
several different categories.

AB-grammars with at most k categories assigned to each symbol were in-
troduced earlier in works by Kanazawa [4], Buszkowski [5], etc. For any fixed
k, Kanazawa demonstrated that the class of languages generated by such gram-
mars is learnable according to Gold’s theory [6]. Specifically, there exists a
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learning algorithm that converges to the correct grammar for any infinite input
sequence drawn from the language. In opposite the class of context-free lan-
guages are not learnable which was proved by Gold [6]. Detailed information on
these grammars can be found in the survey [7]. For these grammars we consider
the case where only one category is assigned to each symbol.

We introduce a subclass of AB-grammars where where non-primitive cate-
gories are not allowed under divisions. Hence, categories like p/(p/p) are not al-
lowed in assignments. We call such grammars basic categorial grammars (BCG).
For BCG we consider the case of assigning k categories to each symbol and de-
note the class of such grammars by Gk. Classes of languages defined by such
grammars form a hierarchy based on the number k. We prove the following
algorithmic properties for class G1.

Theorem 1 The problem of determining for arbitrary grammars G1 and G2

from the class G1 whether the language L(G1) ∩ L(G2) is infinite is algorithmi-
cally undecidable.

Theorem 2 The problem of determining for arbitrary grammars G1 and G2

from the class G1, where the number of symbols in the alphabets of both gram-
mars is 11, whether the language intersection L(G1) ∩ L(G2) is empty, is algo-
rithmically undecidable.

The proof of undecidability is based on a reduction from a known unde-
cidable problem. In this case, the problem used is checking the existence of a
solution for an arbitrary Post correspondence system. This theorem strengthens
a previously known result from Foret’s work [8], which proved a similar theorem
for AB-grammars, but required an alphabet with a significantly larger number
of symbols.

The next part of the talk is devoted to encodings of any context-free language
using AB-grammars with unique category assignment and grammars from the
class G2. This is done in the sense of Greibach’s hardest language theorem [9].
We use the following notation.

Definition 1 The language L1 ⊆ Σ∗ reduces by homomorphism to the language
L2 ⊆ Ω∗ (L1 ≤ L2), if there exists a homomorphism h : Σ → Ω∗ such that a
word w belongs to L1 if and only if h(w) belongs to L2.

For the class G2 we prove the following theorem, which states that any
context-free language without the empty word can be encoded by some grammar
from the class G2. Moreover, this encoding holds in both directions.

Theorem 3 For an arbitrary context-free language L ⊆ Σ+, there exists G —
a grammar from the class G2 such that L ≤ L(G) and L(G) ≤ L.

For class of AB-grammars it is possible to show that such grammars can
define a homomorphic encoding of any context-free language.

Theorem 4 For an arbitrary context-free language L ⊆ Σ+, there exists a
categorial grammar with unique type assignment G such that L ≤ L(G).
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In particular, one of the consequences of this theorem is the solution to the
problem posed in Foret’s paper [8].

Theorem 5 The problem of determining, for AB-grammars with unique cate-
gory assignment G1 and G2, whether L(G1) ⊆ L(G2), is algorithmically unde-
cidable.
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By the definition, each computable set in a computable topological space is indeed semicomputable,
but the converse does not hold; that is, there exist semicomputable sets that are not computable.
Nevertheless, certain topological properties of a set S may ensure that the implication

S semicomputable ⇒ S computable

holds. Since this is still not true in general, a natural question arises:

Under what conditions can a semicomputable set S be approximated by a computable subset to any
given precision?

It is known that any semicomputable continuum S in a computable topological space can be approxi-
mated, with arbitrary precision, by a computable subcontinuum, provided that S is both chainable and
decomposable.
Here we show that the decomposability condition can be replaced by assumption that S is chainable
from a to b, where a is a computable point.
We have proven the following:
Theorem 1. Suppose (X, T , (Ii)) is a computable topological space. Let S be a semicomputable set
in this space such that S is a continuum chainable from a to b, where a is a computable point. Then,
for each open cover U of (X, T ), there exist a computable point b̂ ∈ S and a continuum Ŝ, chainable
from a to b̂, such that

Ŝ ⊆ S, Ŝ ≈U S,

and Ŝ is a computable set in (X, T , (Ii)).
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