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o Classical first-order logic: every formula can be written in prenex
form, satisfiability /validity is not decidable for prenex fragments.

e Bernays—Schonfinkel (BS) class (1928): class of function-free,
quantifier prefix sentences with prefixes IxVyA(x, y) (satisfiability)
and Vx3yA(x, y) (validity).

o Classical & Intuitionistic logic: BS class is decidable.

@ Question: Is the BS class decidable in Godel logics?
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History of Godel Logics

o 1932-33 Godel: Introduced intermediate logics G,. Proved existence
of infinitely many logics between classical and intuitionistic.

@ 1959 — Dummett’s Infinite-Valued Godel Logic: Replaced finite
chains by the full [0, 1] interval, adding the linearity axiom
(A— B)V (B — A);

e 1991 — Avron’s Hypersequent Calculus with a communication rule
capturing linearity proof-theoretically.

e 1998 — Hajek’s t-Norm Logics: Unified Godel, Lukasiewicz, and
Product logics into the t-norm—based fuzzy-logic framework.

@ Since 1990s — Viennese School: Baaz, Ciabattoni, Metcalfe,
Olivetti, Pichler, Zach et al. deepened proof theory, fragments, Kripke
semantics, and complexity analysis.

@ And many more...
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First-order Godel Logics

@ Many-valued logics Gy with V C [0, 1], containing 0 and 1.
e Evaluation (A=A — 1):

I(L)=0

Z(ANA B) = min{Z(A),Z(B)}

Z(AV B) = max{Z(A),Z(B)}

(A B) = {I(B) if Z(A) > Z(B),
1 if Z(A) <Z(B).

Z(VxA(x)) = inf{Z(A(v)) u € Ur}

Z(3xA(x)) = sup{Z(A(u)) u € Uz}

1 fZ(A)=1
Z(AA) = I ) " Absoluteness operator
0 otherwise
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This yields the following definition of the semantics of —:

I(~A) = 0 ifZ(A) >0
)1 otherwise
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Takeuti's observation

Godel implication

I(B) if Z(A) > Z(B)

HA=B) = {1 if Z(A) < Z(B).

is the only one satisfying:
e ZI(A)<I(B)eZ(A—B)=1
e MU{A}EB&NEA—B

o [NE=B=min{Z(A): Ac} <I(B)
(and if M =0 =1<Z(B))
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Key Concepts

Definition (1-entailment)

For a truth value set V, a (possibly infinite) set ' of formulas (1-)entails a
formula A if the interpretation Z on V of A is 1 in case the interpretations
of all formulas in I are 1, i.e.,

Ny A<= (VI,VB el :Z(B)=1) - Z(A) = 1.

e Validity: formula evaluates to 1 in all interpretations.

o l-satisfiability: some interpretation assigns 1.

o Validity and unsatisfiability are not dual in Godel logic, e.g. AV —A
is not valid but its negation is unsatisfiable.

@ Depends only on the relative ordering and the topological type of the
truth set, and not on their specific values.
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Definition of the logic

Gy ={A:Vvinto V:v(A) =1}

V = {0,1} — Gy = CPL
Vi ={0,1/2,1}, V, ={0,1/3,1} — Gy, =Gy,
Vi ={1-1/n:n>1}U{1} — Gy, = Gy
Vi, ={1/n:n>1} U {0} -Gy, =G,
V= {1}U{l1-1/k:1>k>m—1}> Gy, = Gp,
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Why Define a Logic by Its Valid Sentences?

Issue: Different value-sets V' C [0, 1] can induce the same Godel logic Gy .

0 eg.
Vi={1-1:n>1}0{1} and V{={1-2:n>1}uU{1}

both yield G;.

o In fact, there are uncountably many closed subsets of [0, 1] but only
countably many distinct propositional Godel logics.

@ This ensures a one-to-one correspondence between:

{distinct Godel logics} «— {sets of formulas Gy }.
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First-Order Godel logics

Vio,q] = [0,1] —Gpo 1)
Vi ={0}u{l/k: k>1} — G|,
Vi={1}u{l—-1/k: k>1} — G;
Vi ={1}U{l-1/k:1>k>m—1} — Gy,

(Liny (A= B)V(B— A

(CD) Vx(A(x) v B) > (VxA(x) v B)

(Isog) Vx——A(x) D 7—VxA(x)

(Iso1) AIxA(x) — IxAA(x)

(Fin) (TDA)V(ALDA)V -V (An_1D L)
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Relationships between first-order Godel logics
Proposition 1
Whenever V C V'’ then G\ C Gy,.

Proposition 2 (Baaz,Leitsch, Zach).

The following containment relationships hold:
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Prenex Fragments
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Prenex Fragments (Logically Equivalence)

Logically Equivalent Prenex Normal Forms

without A with A

Godel set V 1-valid | > O-valid | 1-valid | > 0-valid

finite || M

Gy . X X
X X X
X X X
X X X

Count. without G;
0 isolated
0 not isolated

NS

Prenexation fails for G 1; when 0 is not isolated:
VxA(x) A Vx——A(x)

The same holds for all Godel logics where there is only one cumulation point from
above.
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Possible truth value sets

Perfect set

A set P C R is perfect if it is closed and all its points are limit points in P.

Cantor-Bendixon

Any closed V C R can be uniquely written as V = PU C, with P a
perfect subset of V and C countable and open.

Examples for perfect sets

@ [0,1], any closed interval, any finite union of closed intervals

o Cantor Middle Third set C: all numbers of [0, 1] that do not have a 1
in the triadic notation (cut out all open middle intervals recursively)
(perfect but nowhere dense)
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Full characterization of Axiomatizability

Theorem (Trakhtenbrot, 1950)

The set of first-order sentences that are valid in all finite models is not
recursively enumerable.

Similarly, the validity in first-order Godel logic is characterized by the
following theorem.

Theorem (Baaz, Preining)

A first-order Godel logic Gy, is recursively enumerable iff one of the
following conditions is satisfied:

1. V is finite,

2. V is uncountable and 0 is an isolated point,

3. V is uncountable, and every neighbourhood of 0 is in the prefect subset.
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Incompleteness of First-order Goedel Logics

Not recursively enumerable

@ countably infinite truth value set

@ every neighbourhood of 0 is countably infinite

(Preining — PhD; Baaz, Preining, Zach 2007)
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Prenex Fragments (Validity Equivalence)

Validity Equivalent Prenex Normal Forms
Godel set V without A | with A
Finite .
Uncountable | 0 isolated .

0 is in perfect set .
0 not in perfect set | X
Countable Open

@ Prenex fragment in the uncountable case is always r. e. as derivability in
Gpo,1j can be expressed by Kleene's T (putting double negation in front of all
atoms and shifting the quantifiers in the classical way).

@ Prenex fragments without references to 0 (L-free) are r.e. iff it is
uncountable

The prenex fragment of Gy is r.e. if and only if V is finite or uncountable. The
prenex fragments of any two Gy where V is uncountable coincide.

T mid = = et
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Semantic Core: Skolemization
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Skolemization

@ Skolemization enables decidability in BS class.

e Validity and 1-satisfiability in BS class are decidable for all Godel
logics

Lemma (Skolemization preserves validity)

For all prenex formulas QXA(X) and all Gédel logics G
[Fe QRA(R) <= T IF¢ (QRA(X))°

where QX is a quantifier prefix and A(X) is a quantifier-free formula.
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It is sufficient to prove with A arbitrary and f a new function:
[Fg IXVYA(X, y) & T IFg IXA(X, f(X)).

It follows then from induction. (=) The direction from left to right is
obvious.

(«=) For the other direction, if ¥ IxVyA(X, y) then for some
interpretation 7

sup{de | Z(VyA(C,y)) = dc} < d < 1.

Using the axiom of choice we can assign a value for every f(€) such that
Z(A(¢C, f(T)) is in between dg and de + %. As a consequence

1—d 1-d 1-d
sup{o%—i—72 |I(A(E,f(f)))§0%+72 }§d+72 <1

and thus I K¢ IXA(X, f(X)). O
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BS class
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Validity in Berneys-Schénfinkel (BS) class is decidable for all Godel logics.

from above lemma follows

e Key transformation: Vx3yA(x,y) ~ 3IYA(C,Yy)
k¢ YRIFA(R, 7) <=6 FFA(E, 7)

for new constants €. (This is the core - “Skolemization step” -
validity reduces to existential formulas with constants only.)

o After this, validity becomes a decidable problem for BS class.

@ Use constant domain countermodels to check validity - Suppose there
is a countermodel M such that M W 3yA(C,y). Then there is also a
countermodel M’ such that M’ ¥ ¢ 3yA(C, y) where the domain of
M’ contains only interpretations of ¢.
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1) Let 3yA(y) contain only constants €, then Herbrand'’s theorem holds
for Ay A(y) for all Godel logics G.

2) Let VX3yA(X,y) prenex formulas contain only constants d, then
¢ VX3yA(X, y) <=k YX3yA(X,y) for all infinitely-valued Gédel
logics G, G'.

1) According to the proof of the above theorem, M ¥ ¢ 3yA(C, y) implies
M’ ¥ 3yA(C, ¥) with restricted domain to constants only.

2) follows from 1), as Herbrand disjunction is contained in \/, A(&p, d)
where &,, d, are possible variations of ¢, d and validity for propositional
formulas coincides with infinitely-valued Godel logics. Ol

Note that 1) is not trivial as prenex formulas and consequently 3-formulas
(see. Skolemization Lemma ) for countable Godel logics are not r.e.

T = — = ot
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1-satisfibility: Gluing Lemma
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Lemma (Gluing lemma)

Let T be an interpretation into V. C [0,1]. Let us fix a value w € [0, 1] and
define

I(P) if Z(P)<w,

Z,(P) =
(P) {1 otherwise

for atomic formula P in L. Then T, is an interpretation into V' such that

Z(B) if Z(B) <w,
1 otherwise

1-satisfiability in first-order Godel logics coincides with classical
satisfiability iff 0 is isolated.
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Proposition

In the following cases, 1-satisfiability in Godel logics is classical
satisfiability:

1) In the propositional case

2) In the first-order case, where the truth value set is arbitrary but 0 is
isolated

3) The prenex fragment for any truth value set

4) The existential fragments for any truth value set

5) The L - free fragment is G 1) 1-satisfiable iff it is classical satisfiable.
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1-satisfiability in Berneys-Schonfinkel class is decidable for all Gédel logics.

The proof is obvious as 1-satisfiability coincides with classical satisfiability
and, therefore, is decidable. [

v

I-satisfiability of monadic fragments is always decidable if 0 is isolated.
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o All Godel logics coincide for the BS class w.r.t. 1-satisfiability, but
only the infinitely valued Gédel logics coincide for the BS class w.r.t.
to validity.

@ The BS fragment of any infinitely-valued Goédel logic is the
intersection of the BS fragments of the finitely-valued Godel logic,
both for satisfiability and validity.
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Conclusion

Fragment Skolemizable r.e. Decidable
First-order Godel Logic no no no
Prenex yes sometimes | not known
BS Class yes yes yes
Monadic finite not known yes yes
Monadic infinite not known | not known no
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Conclusion

Fragment Skolemizable r.e. Decidable
First-order Godel Logic no no no
Prenex yes sometimes | not known
BS Class yes yes yes
Monadic finite not known yes yes
Monadic infinite not known | not known no
@ All prenex intermediate logics admit Skolemization and BS class of
these logics are decidable.
@ Ackermann class is also decidable.
o Study other fragments: existential, monadic ...
@ What happens when A is present.
@ Study decidable classes of non R.E. Godel logics as for Gy is the

intersection of all finite Godel logics and G relates to temporal logics.
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Thank you!
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