Cut-elimination for non-wellfounded sequent calculi for IL

Sebastijan Horvat¹, Borja Sierra Miranda², Thomas Studer²

¹Department of Mathematics, Faculty of Science, University of Zagreb ²Logic and Theory Group, University of Bern

Logic and Applications 2025

Introduction: Interpretability logic IL

- interpretability logic: a modal logic corresponding to the notion of relative interpretability between first-order arithmetical theories
- syntax of interpretability logic: given by

$$\phi ::= \boldsymbol{p} \mid \bot \mid \phi \to \phi \mid \phi \rhd \phi,$$

where *p* ranges over a fixed set of propositional variables

we treat other Boolean connectives and modal operators
 □ and
 ○ as abbreviations:

$$\neg \phi := \phi \to \bot, \qquad \top := \neg \bot, \qquad \phi \land \psi := \neg (\phi \to \neg \psi),$$
$$\phi \lor \psi := \neg \phi \to \psi, \qquad \Box \phi := \neg \phi \rhd \bot, \qquad \Diamond \phi := \neg (\phi \rhd \bot).$$

Introduction: Interpretability logic IL

The Hilbert-style axiomatization of IL is given by the following axioms:

• tautologies of classical propositional logic,

(K)
$$\Box(\phi \to \psi) \to (\Box \phi \to \Box \psi)$$
,

- (4) $\Box \phi \rightarrow \Box \Box \phi$,
- (L) $\Box(\Box\phi\to\phi)\to\Box\phi$,
- (J1) $\Box(\phi \rightarrow \psi) \rightarrow (\phi \triangleright \psi)$,
- (J2) $(\phi \rhd \chi) \land (\chi \rhd \psi) \rightarrow (\phi \rhd \psi)$,
- (J3) $(\phi \rhd \psi) \land (\chi \rhd \psi) \rightarrow (\phi \lor \chi) \rhd \psi$,
- (J4) $\phi \rhd \psi \rightarrow (\Diamond \phi \rightarrow \Diamond \psi)$,
- (J5) $\Diamond \phi \rhd \phi$,

and inference rules modus ponens and necessitation:

$$\frac{\phi \to \psi \qquad \phi}{\psi} \;, \qquad \frac{\phi}{\Box \phi} \;.$$

Generalised Veltman (Verbrugge) semantics

- basic semantics for interpretability logic: Veltman semantics
- Verbrugge semantics is a generalization of Veltman semantics
- an ordered quadruple $(W, R, \{S_w : w \in W\}, \Vdash)$ is called a **Verbrugge model** if it satisfies the following conditions:
 - (i) W is a non-empty set and $R \subseteq W \times W$ is a transitive and reverse well-founded
 - (ii) $S_w \subseteq R[w] \times (\mathcal{P}(R[w]) \setminus \{\emptyset\})$

 - (iii) wRu implies $uS_w\{u\}$ (iv) If uS_wV and $(\forall v \in V)(vS_wZ_v)$, then $uS_w\left(\bigcup_{v \in V} Z_v\right)$ (v) If wRuRv then $uS_w\{v\}$
 - (vi) If $uS_w V$ and $V \subseteq Z \subseteq R[w]$ then $uS_w Z$

Verbrugge semantics

(vii) ⊩ is a forcing relation defined as usual in Boolean cases, and

$$w \Vdash \phi \rhd \psi \text{ iff } \forall u ((wRu \& u \Vdash \phi) \Rightarrow \exists V (uS_w V \& (\forall v \in V)(v \Vdash \psi))).$$

Veltman (ordinary) vs. Verbrugge (generalised) semantics

The current state of research regarding the principles that are used to extend IL:

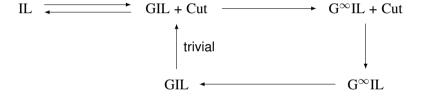
	principle	compl(o)	compl(g)	FMP(o)	FMP(g)
М	$\phi \rhd \psi \to \phi \land \Box \xi \rhd \psi \land \Box \xi$	✓	✓	✓	✓
M_0	$\phi \rhd \psi \to \Diamond \phi \land \Box \xi \rhd \psi \land \Box \xi$	✓	✓	?	✓
Р	$\phi \rhd \psi \to \Box (\phi \rhd \psi)$	✓	✓	✓	✓
P_0	$\phi \rhd \diamondsuit \psi \to \Box (\phi \rhd \psi)$	X	✓	?	✓
R	$\phi \rhd \psi \to \neg (\phi \rhd \neg \xi) \rhd \psi \land \Box \xi$?	✓	?	✓
W	$\phi \rhd \psi \to \phi \rhd \psi \land \Box \neg \phi$	✓	✓	✓	✓
F	$\phi \rhd \Diamond \phi \to \Box \neg \phi$	X	?	✓	✓
W*	$\phi \rhd \psi \to \psi \land \Box \xi \rhd \psi \land \Box \xi \land \Box \neg \phi$	✓	✓	?	✓

 for example, the logic ILP is obtained from IL by adding the persistence principle P as an axiom

The systems of sequent calculus for interpretability logics

- cut-free systems for logics IL and IK4 (axioms of IL without the L axiom):
 Katsumi Sasaki, A cut-free sequent system for the smallest interpretability logic, Studia Logica, 70(3):353–372, 2002.
- another cut-free system for the logic IK4:
 - Katsumi Sasaki, *A sequent system for a sublogic of the smallest interpretability logic*, Journal of the Nanzan Academic Society, Mathematical Sciences and Information Engineering, 3:1–12, 2003.
- cut-free system for logic IK4P and system for ILP (that is conjectured to be cut-free):
 - Katsumi Sasaki, *A sequent system for the interpretability logic with the persistence axiom*, Journal of the Nanzan Academic Society, Mathematical Sciences and Information Engineering, 2:25–34, 2002.

An overview of the results that will be presented here



Sequents

• a **sequent** is an expression of the form

$$\Gamma \Rightarrow \Delta$$

where Γ and Δ are finite multisets of (IL-)formulas

• given a multiset of formulae Φ , we use the following notation:

$$\Phi \rhd \bot := \{ \phi \rhd \bot \mid \phi \in \Phi \}$$

$$\Phi_{X} := \{ \phi_{i} \mid i \in X \}$$

- we write $[S_i]_{m...i...0}$ for the finite sequence of sequents $(S_m, S_{m-1}, \ldots, S_0)$
- also we write $\phi_0, \dots, \phi_k, \Gamma_0, \dots, \Gamma_l \Rightarrow \Delta_0, \dots, \Delta_m, \psi_0, \dots, \psi_n$ instead of $\{\phi_0, \dots, \phi_k\} \cup \Gamma_0 \cup \dots \cup \Gamma_l \Rightarrow \Delta_0 \cup \dots \cup \Delta_m \cup \{\psi_0, \dots, \psi_n\}$

Wellfounded sequent calculus GIL

We define the sequent calculus GIL as the wellfounded calculus given by the following rules:

$$\frac{\Gamma \Rightarrow \Delta, \phi \qquad \psi, \Gamma \Rightarrow \Delta}{\phi \to \psi, \Gamma \Rightarrow \Delta} \to L$$

$$\frac{\Gamma \Rightarrow \Delta, \phi \qquad \psi, \Gamma \Rightarrow \Delta}{\phi \to \psi, \Gamma \Rightarrow \Delta} \to L$$

$$\frac{\phi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \psi} \to R$$

$$\frac{[\psi_{i} \rhd \bot, \psi_{i}, \Phi_{[0,i)} \rhd \bot, \phi \rhd \bot \Rightarrow \Phi_{[0,i)}, \phi]_{m...i...0}}{\{\phi_{i} \rhd \psi_{i}\}_{i < m}, \Gamma \Rightarrow \psi_{m} \rhd \phi, \Delta}$$

The system GIL + Cut also has the following Cut rule:

$$\frac{\Gamma \Rightarrow \Delta, \chi \qquad \chi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$
Cut

The rule $\triangleright_{\mathrm{IL}}$ - an example

Let m = 2. Then we have

$$\frac{S_2 \quad S_1 \quad S_0}{\phi_0 \rhd \psi_0, \phi_1 \rhd \psi_1, \Gamma \Rightarrow \psi_2 \rhd \phi, \Delta} \rhd_{\mathrm{IL}}$$

where

$$S_{2} = \psi_{2} \rhd \bot, \psi_{2}, \phi_{0} \rhd \bot, \phi_{1} \rhd \bot, \phi \rhd \bot \Rightarrow \phi_{0}, \phi_{1}, \phi$$

$$S_{1} = \psi_{1} \rhd \bot, \psi_{1}, \phi_{0} \rhd \bot, \phi \rhd \bot \Rightarrow \phi_{0}, \phi$$

$$S_{0} = \psi_{0} \rhd \bot, \psi_{0}, \phi \rhd \bot \Rightarrow \phi$$

An example of a wellfounded proof in GIL

A wellfounded **proof** in GIL (+ Cut) is a finite tree whose nodes are marked by sequents and whose leaves are marked by initial sequents (ax, \perp L) and that is constructed to the rules of GIL (+ Cut).

$$\frac{ \neg \neg p \rhd \bot, p, \bot \rhd \bot, p \rhd \bot \Rightarrow \bot, p}{\neg \neg p \rhd \bot, \bot \rhd \bot, p \rhd \bot \Rightarrow \bot, p, \neg p} \neg R
 \neg \neg p \rhd \bot, \neg \neg p, \bot \rhd \bot, p \rhd \bot \Rightarrow \bot, p} \neg L$$

$$\frac{ \Diamond p \rhd \bot, p \rhd \bot \Rightarrow p, \neg \neg p \rhd \bot}{ \Diamond p \rhd \bot, \Diamond p, p \rhd \bot \Rightarrow p} \neg L$$

$$\frac{ \Diamond p \rhd \bot, \Diamond p, p \rhd \bot \Rightarrow p}{ \Rightarrow \Diamond p \rhd p} \rhd_{IL}$$

So we have proved that $GIL \vdash \Diamond p \rhd p$.

Hilbert style proofs in IL and sequent proofs in GIL + Cut

• By induction on the length of the Hilbert proof of ϕ we can prove:

if IL
$$\vdash \phi$$
, then GIL + Cut $\vdash \Rightarrow \phi$.

• Let S be a sequent $\Gamma \Rightarrow \Delta$. We define the IL-formula S^{\sharp} as the formula

$$\bigwedge \Gamma \to \bigvee \Delta.$$

Theorem

IL $\vdash S^{\sharp}$ if and only if GIL + Cut $\vdash S$.

Non-wellfounded calculus

- allows proofs of infinite height
- to guarantee that there is no vicious infinite reasoning, it is usual to add a
 constraint to the possible infinite paths in the proof, e.g. enforce that any
 infinite path goes through the premise of a rule infinite often

A **local-progress sequent calculus** is a pair C = (R, L) where:

- (i) \mathcal{R} is a set of rules, called the rules of \mathcal{C} ,
- (ii) L is a function that given a rule $R \in \mathcal{R}$ and an instance of the rule

$$\frac{S_0,\ldots,S_{k-1}}{S}\in R$$

returns a subset of $\{0, \dots, k-1\}$. This subset is the set of premises of the rule instance that make progress. The function is called the local progress function of C.

Sequent calculus $G^{\infty}IL$

We define the sequent calculus $G^{\infty}IL$ as the local-progress sequent calculus given by the following rules:

$$\frac{\Gamma \Rightarrow \Delta, \phi \qquad \psi, \Gamma \Rightarrow \Delta}{\phi \to \psi, \Gamma \Rightarrow \Delta} \to L$$

$$\frac{\Gamma \Rightarrow \Delta, \phi \qquad \psi, \Gamma \Rightarrow \Delta}{\phi \to \psi, \Gamma \Rightarrow \Delta} \to L$$

$$\frac{\phi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \phi \to \psi} \to R$$

$$\frac{[\psi_i, \Phi_{[0,i)} \rhd \bot, \phi \rhd \bot \Rightarrow \Phi_{[0,i)}, \phi]_{m...i...0}}{\{\phi_i \rhd \psi_i\}_{i < m}, \Gamma \Rightarrow \psi_m \rhd \phi, \Delta}$$

$$\triangleright_{IK4}$$

Progress only occurs at the premises of \triangleright_{IK4} . The system with the Cut rule:

$$\frac{\Gamma \Rightarrow \Delta, \chi \qquad \chi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$
 Cut

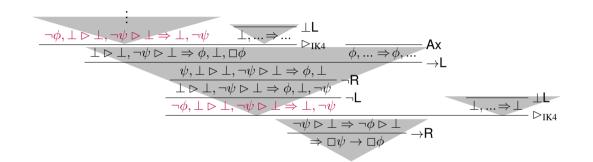
will be denoted as $G^{\infty}IL + Cut$.

Comparison of rules

$$\frac{[\psi_{i} \rhd \bot, \psi_{i}, \Phi_{[0,i)} \rhd \bot, \phi \rhd \bot \Rightarrow \Phi_{[0,i)}, \phi]_{m...i...0}}{\{\phi_{i} \rhd \psi_{i}\}_{i < m}, \Gamma \Rightarrow \psi_{m} \rhd \phi, \Delta} \rhd_{\text{IL}}$$

$$\frac{[\psi_{i}, \Phi_{[0,i)} \rhd \bot, \phi \rhd \bot \Rightarrow \Phi_{[0,i)}, \phi]_{m...i...0}}{\{\phi_{i} \rhd \psi_{i}\}_{i < m}, \Gamma \Rightarrow \psi_{m} \rhd \phi, \Delta} \rhd_{\text{IK4}}$$

An example of a non-wellfounded proof in $G^{\infty}IL$



So we have proved that $G^{\infty}IL \vdash \Box \psi \rightarrow \Box \phi$, where $\psi = \Box \phi \rightarrow \phi$.

From GIL + Cut to $G^{\infty}IL$ + Cut

Theorem

Let *S* be a sequent. If GIL + Cut $\vdash S$, then $G^{\infty}IL + Cut \vdash S$.

Proof.

• by induction on the height of the proof $\pi \vdash S$ in GIL + Cut and case analysis in the last rule applied

Local cut admissibility

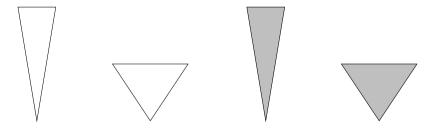
If π is a non-wellfounded proof, we denote by $lhg(\pi)$ its local height.

Lemma

Assume we have proofs $\pi \vdash \Gamma \Rightarrow \Delta, \chi$ and $\tau \vdash \chi, \Gamma \Rightarrow \Delta$ in $G^{\infty}IL + Cut$ which are locally cut-free. Then there is $\rho \vdash \Gamma \Rightarrow \Delta$ in $G^{\infty}IL + Cut$ which is locally cut-free.

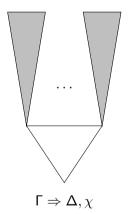
Proof. By induction on the lexicographic order of the pairs $\langle |\chi|, \operatorname{lhg}(\pi) + \operatorname{lhg}(\tau) \rangle$.

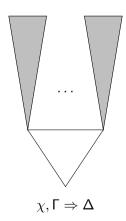
Borja Sierra Miranda, Thomas Studer and Lukas Zenger. "Coalgebraic Proof Translations of Non-Wellfounded Proofs". In Agata Ciabattoni, David Gabelaia and Igor Sedlár (eds). (2024) Advances in Modal Logic, Vol. 15. College Publications

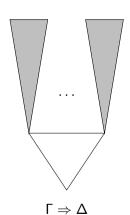


On the left: non-wellfounded proof and local fragment without cuts; on the right: non-wellfounded proof and local fragment that can contain cuts

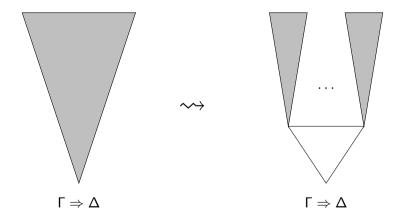
(1) local admissibility

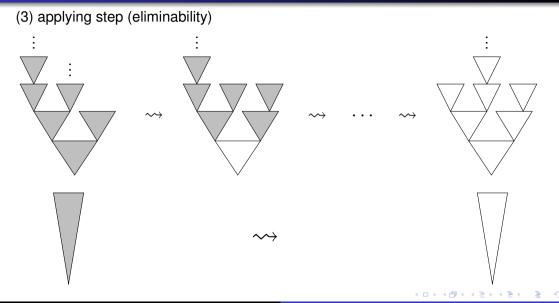






(2) step (local eliminability)





Cut elimination for $G^{\infty}IL$

By just applying the previous lemma corecursively to local proof fragments we get the desired result about the cut elimination for $G^{\infty}IL$.

Theorem

If $G^{\infty}IL + Cut \vdash S$, then $G^{\infty}IL \vdash S$.

The set $Sub(\phi)$

• Let ϕ be a formula. We define the set $Sub(\phi)$ recursively as follows:

$$\begin{split} \mathsf{Sub}(\pmb{p}) &= \{\pmb{p}\}, \\ \mathsf{Sub}(\bot) &= \{\bot\}, \\ \mathsf{Sub}(\phi \to \psi) &= \{\phi \to \psi\} \cup \mathsf{Sub}(\phi) \cup \mathsf{Sub}(\psi), \\ \mathsf{Sub}(\phi \rhd \psi) &= \{\phi \rhd \psi, \phi \rhd \bot, \psi \rhd \bot, \bot\} \cup \mathsf{Sub}(\phi) \cup \mathsf{Sub}(\psi). \end{split}$$

If Γ is a multiset of formulas, Sub(Γ) is the set

$$\bigcup \{ \mathsf{Sub}(\phi) \mid \phi \in \Gamma \}.$$

• If $S = (\Gamma \Rightarrow \Delta)$ is a sequent, then Sub(S) is simply the set $Sub(\Gamma \cup \Delta)$.

$$\frac{[\psi_{i}, \Phi_{[0,i)} \rhd \bot, \phi \rhd \bot \Rightarrow \Phi_{[0,i)}, \phi]_{m...i...0}}{\{\phi_{i} \rhd \psi_{i}\}_{i < m}, \Gamma \Rightarrow \psi_{m} \rhd \phi, \Delta} \rhd_{\text{IK4}}$$

Lemma - formulas occuring in $G^{\infty}IL$ -proofs

Lemma

Let $\pi \vdash S$ in $G^{\infty}IL$ and ϕ be a formula occurring in π . Then $\phi \in Sub(S)$.

Proof. By the induction on the length of the node where ϕ appears.

Cut elimination for GIL

Theorem

For any finite set Λ of formulas, we have that

$$G^{\infty}IL \vdash \Gamma \Rightarrow \Delta \text{ implies } GIL \vdash \Lambda \rhd \bot, \Gamma \Rightarrow \Delta.$$

Proof. Let $\pi \vdash \Gamma \Rightarrow \Delta$ in $G^{\infty}IL$. By induction on the lexicographical order

$$\Big\langle |\operatorname{\mathsf{Sub}}(\mathsf{\Gamma}\Rightarrow \Delta)\setminus \mathsf{\Lambda}|, \operatorname{\mathsf{Ihg}}(\pi)\Big
angle$$

and the case analysis in the last rule of π .

Corollary

Let *S* be a sequent. If $GIL + Cut \vdash S$, then $GIL \vdash S$.

Bibliography

- Sebastijan Horvat, Borja Sierra Miranda, and Thomas Studer, Non-wellfounded Proof Theory for Interpretability Logic, to appear, 2025.
- SEBASTIJAN HORVAT, TIN PERKOV, A correspondence theorem for interpretability logic with respect to Verbrugge semantics, Logic Journal of the IGPL, vol. 33 (2025), pp. jzae081
- BORJA SIERRA MIRANDA, THOMAS STUDER, AND LUKAS ZENGLER, Coalgebraic Proof Translations of Non-Wellfounded Proofs, Advances in Modal Logic (Agata Ciabattoni, David Gabelaia and Igor Sedlár, editors), vol. 15, College Publications, 2024, pp. 527–548.
- Katsumi Sasaki, *A Cut-Free Sequent System for the Smallest Interpretability Logic*, *Studia Logica*, vol. 70 (2002), no. 2, pp. 353–372.

Questions?

