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Introduction: Interpretability logic IL

@ interpretability logic: a modal logic corresponding to the notion of relative
interpretability between first-order arithmetical theories

@ syntax of interpretability logic: given by
p=plLlo—=o|o>0,
where p ranges over a fixed set of propositional variables

@ we treat other Boolean connectives and modal operators 0 and < as
abbreviations:
- =¢— 1, T =1, DAY = =(p = ),
Qb\/d) = ﬁ¢*>¢a D¢:: “ngJ—a <>¢ = _'(QbDJ-)
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Introduction: Interpretability logic IL

The Hilbert-style axiomatization of IL is given by the following axioms:
@ tautologies of classical propositional logic,

(K) 8(¢ = ¥) — (3¢ — OY),

(4) D¢ — OO9,

(L) o(o¢ — ¢) — Og,
(1) o(¢ = v) = (o> ),
(J2) (o> x) A (x>2) = (61> ¢),
(J3) (¢ ) A (x> ) = (6 V X) >,
(J4) oY = (O — OY),
(J5) Go > 9,

and inference rules modus ponens and necessitation:

6ov o ¢
P ’ O¢
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Generalised Veltman (Verbrugge) semantics

@ basic semantics for interpretability logic: Veltman semantics
@ Verbrugge semantics is a generalization of Veltman semantics

@ an ordered quadruple (W, R,{S, : w € W},IF) is called a Verbrugge model
if it satisfies the following conditions:

(i) Wis anon-empty setand R C W x W is a transitive and reverse

well-founded
(i) Sw C RIW] x (P(R[W])\ {0})
(ii) wRu implies uSy{u}
(iv) If uSyV and (Vv € V)(vSwZy), then uSy ( U Z.,)
(v) If wRuRv then uS,{v} vev
)

(vi) If uSyV and V C Z C R[w] then uS,Z
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Verbrugge semantics

(vii) I+ is a forcing relation defined as usual in Boolean cases, and

w ik ¢ > o iff Vu((WRuU & u I+ ¢) = 3V (uSy V&(Vv € V)(v IF v))).

w R u Sw vy
SN )
or° K Y
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Veltman (ordinary) vs. Verbrugge (generalised) semantics

The current state of research regarding the principles that are used to extend IL:

principle compl(o) | compl(g) | FMP(o) | FMP(g)
M P> — pADOED> Y ADOE v v v v
Mo o> — OCopNDE> Y ADOE v v ? v
P d> — O(op> ) v v v v
Po o> — O(op> ) X v ? v
R d> Y — (p>—E) > ADE ? v ? v
W P>Y = d>YANTOP v v v v
F P> P — O X ? v v
W o>y >y AOE> Y ADEA DO v v ? v

@ for example, the logic ILP is obtained from IL by adding the persistence
principle P as an axiom
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The systems of sequent calculus for interpretability logics

@ cut-free systems for logics IL. and IK4 (axioms of IL without the L axiom):

Katsumi Sasaki, A cut-free sequent system for the smallest interpretability
logic, Studia Logica, 70(3):353-372, 2002.

@ another cut-free system for the logic IK4:

Katsumi Sasaki, A sequent system for a sublogic of the smallest
interpretability logic, Journal of the Nanzan Academic Society, Mathematical
Sciences and Information Engineering, 3:1-12, 2003.

@ cut-free system for logic IK4P and system for ILP (that is conjectured to be
cut-free):

Katsumi Sasaki, A sequent system for the interpretability logic with the
persistence axiom, Journal of the Nanzan Academic Society, Mathematical
Sciences and Information Engineering, 2:25-34, 2002.
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An overview of the results that will be presented here

1L GIL + Cut G*IL + Cut
trivial
GIL G*IL
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@ a sequent is an expression of the form
M= A

where I and A are finite multisets of (IL-)formulas
@ given a multiset of formulae ¢, we use the following notation:

o> 1 :={p>L]|¢pecd}

dx :={¢i|ie X}
@ we write [Sj]n...i..0 for the finite sequence of sequents (Spm, Sm_1, ..., So)

@ also we write ¢g, ..., 0k, lo,...,[1 = Dg,...,Am, Yo, ..., %n
instead of {¢g,...,Pk} UToU--- Ul = AgU---UARU{to,...,¢¥n}
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Wellfounded sequent calculus GIL

We define the sequent calculus GIL as the wellfounded calculus given by the
following rules:

PropaA P Tr=a 1L
= A¢ v, = A o, = A R
b=, T = A - r=2006—0¢
[Wi> L, P> L, o> L= Py, élm.i.o
IL

{oi>Yiticm T = Ym> ¢, A

The system GIL + Cut also has the following Cut rule:

= A x x, = A
M= A

Cut
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The rule >y - an example

Let m = 2. Then we have

S S S N
G0 > Yo, 1 B U1, T = > o, A -

where

32:¢2>J—7¢27¢0>J—7¢1 I>J—7¢I>J-:>¢07¢17¢
S1 :77/}1 DJ—7¢17¢0>J—7¢I>J—:>¢07¢
So =10 > Lo, o> L =9
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An example of a wellfounded proof in GIL

A wellfounded proof in GIL (+ Cut) is a finite tree whose nodes are marked by
sequents and whose leaves are marked by initial sequents (ax, 1L) and that is
constructed to the rules of GIL (+ Cut).

—polplolpoli=slip X
——p> L, I>1,p>L=1p-p R
——p>L,—p,L>L,p>L=1p L Il 1, l>1l=1 LL
op> L,p>L=p,~—p>L 1L
Op> L, Oop,p>L=p

= Op>p

-L
>IL

So we have proved that GIL - ¢p > p.
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Hilbert style proofs in IL and sequent proofs in GIL + Cut

@ By induction on the length of the Hilbert proof of ¢ we can prove:
if IL - ¢, then GIL + Cut - = ¢.
@ Let Sbe asequent T = A. We define the IL-formula S* as the formula

/\F—>\/A.

IL - S*if and only if GIL + Cut - S.
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Non-wellfounded calculus

@ allows proofs of infinite height

@ to guarantee that there is no vicious infinite reasoning, it is usual to add a
constraint to the possible infinite paths in the proof, e.g. enforce that any
infinite path goes through the premise of a rule infinite often

A local-progress sequent calculus is a pair C = (R, L) where:
() R is a set of rules, called the rules of C,
(i) Lis a function that given a rule R € R and an instance of the rule

S0, -+ » Sk—1
S

returns a subset of {0, ...,k — 1}. This subset is the set of premises of the
rule instance that make progress. The function is called the local progress
function of C.

eR
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Sequent calculus G™IL

We define the sequent calculus G*°IL as the local-progress sequent calculus
given by the following rules:

pTopa & Troath
r=A,¢ ,F=A O, = A, .
b, = A - Fr=240,0 90

[Vis Ppo,iy > L, o> L = Doy, dlmio
{6i > Yiticm, T = Ym> ¢, A
Progress only occurs at the premises of k4. The system with the Cut rule:

>1K4

M= A,x X, = A
M= A

Cut

will be denoted as G*°IL + Cut.
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Comparison of rules

[Vi > L, i, @pop > L, o> L = Doy, @lm.io
{0i> Viticm, T = Ym> ¢, A

>

[Vi, Ppo.iy > L, 9> L = P iy, Alm..ii.0
{0i > Yiticm, T = Ym > ¢, A

>1k4
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An example of a non-wellfounded proof in G*IL

ﬁ@,LDL,ﬁQﬁDL#L,ﬁ’@ 1= 1L
>1k4 — Ax

I>l, > 1l=0¢ 1,00 Gy ... =0, ...

vLl>L,w> L=a L —L
I>1l, > Ll=¢ L oH
S l>lgpl= 1 5 - T.=o1 +k
> 1L =g L Pk
= Y — O¢ —R

So we have proved that G*IL + Oy — O¢, where ¢ = O¢ — ¢.
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From GIL + Cut to G*°IL + Cut

Let S be a sequent. If GIL + Cut - S, then G*IL + Cut + S.

Proof.

@ by induction on the height of the proof 7 - S in GIL + Cut and case analysis in
the last rule applied
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Local cut admissibility

If 7 is a non-wellfounded proof, we denote by Ihg() its local height.

Assume we have proofs 7 =T = A, x and 7 - x,I = A in G*IL + Cut which are
locally cut-free. Then thereis p =T = A in G*IL + Cut which is locally cut-free.

Proof. By induction on the lexicographic order of the pairs (|x|, lhg() + Ihg(7)).
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Coalgebraic Proof Translations of Non-Wellfounded Proofs

Borja Sierra Miranda, Thomas Studer and Lukas Zenger. "Coalgebraic Proof Translations
of Non-Wellfounded Proofs". In Agata Ciabattoni, David Gabelaia and Igor Sedlar (eds).
(2024) Advances in Modal Logic, Vol. 15. College Publications

v 1w

On the left: non-wellfounded proof and local fragment without cuts;
on the right: non-wellfounded proof and local fragment that can contain cuts
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Coalgebraic Proof Translations of Non-Wellfounded Proofs

(1) local admissibility

M= A,x x, = A r= A
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Coalgebraic Proof Translations of Non-Wellfounded Proofs

(2) step (local eliminability)

M= A M= A
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Coalgebraic Proof Translations of Non-Wellfounded Proofs
(3) applying step (eliminability)

-
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Cut elimination for G*IL

By just applying the previous lemma corecursively to local proof fragments we get
the desired result about the cut elimination for G*IL.

If GIL + Cut - S, then G*IL + S.
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The set Sub(¢)

@ Let ¢ be a formula. We define the set Sub(¢) recursively as follows:

Sub(p) = {p},
Sub(L) = {1},

Sub(¢ — 1) = {¢ — 1} U Sub(¢) U Sub(4),
Sub(¢p> 1) = {¢> v, ¢ > L,> L, L} USub(4) U Sub(¥).

@ If I' is a multiset of formulas, Sub(I") is the set

J{sub(e) | ¢ €T}
e If S= (I = A) is a sequent, then Sub(S) is simply the set Sub(I' U A).

[Vis Ppo,iy > L, o> L = Py, dlm.io
{¢i > T,Z)i}i<m, M= d}m > ¢7 A

>1k4
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Lemma - formulas occuring in G>*IL-proofs

Let 7 = Sin G™IL and ¢ be a formula occurring in w. Then ¢ € Sub(S).

Proof. By the induction on the length of the node where ¢ appears.
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Cut elimination for GIL

For any finite set A of formulas, we have that

G®ILFT = AimpliesGILFA> L, T = A.

Proof. Let 7 - I = A in G*IL. By induction on the lexicographical order

<y Sub(l = A)\ A, Ihg(ﬂ')>

and the case analysis in the last rule of .

Let S be a sequent. If GIL + Cut + S, then GIL - S.

Sebastijan Horvat, Borja Sierra Miranda, Thomas Studer Cut-elimination for non-wellfounded sequent calculi for IL



Bibliography

@ SEBASTIJAN HORVAT, BORJA SIERRA MIRANDA, AND THOMAS STUDER,
Non-wellfounded Proof Theory for Interpretability Logic, to appear, 2025.

@ SEBASTIJAN HORVAT, TIN PERKOV, A correspondence theorem for
interpretability logic with respect to Verbrugge semantics, Logic Journal of
the IGPL, vol. 33 (2025), pp. jzae081

@ BORJA SIERRA MIRANDA, THOMAS STUDER, AND LUKAS ZENGLER,
Coalgebraic Proof Translations of Non-Wellfounded Proofs, Advances in
Modal Logic (Agata Ciabattoni, David Gabelaia and Igor Sedlar, editors),
vol. 15, College Publications, 2024, pp. 527-548.

@ KATSUMI SASAKI, A Cut-Free Sequent System for the Smallest Interpretability
Logic, Studia Logica, vol. 70 (2002), no. 2, pp. 353-372.

[ Questions? ]
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