
Two Extensions of Lambek Calculus

Michael Moortgat, Utrecht University

LAP 2025, Dubrovnik

Dürer, Melencolia I, 1514

Plan

SWOT Strengths and weaknesses of two extensions of Lambek Calculus:

▶ Unary modalities, structural control

running example: relative clauses

▶ Grishin, polarities, continuations

scope construal

But first a little appetizer . . .

Bluff your way in grammar logics

Grammar logics in the style of [Lam68] ‘Deductive systems as categories’. One starts
from Id/Composition, plus inference rules characterizing the logical properties of the
type-forming operations. As further add-ons, one can then add structural postulates.

A −→ A
A −→ B B −→ C

A −→ C

Logic Laws of adjointness. At the core of the grammar logics are residuated families.
The base logic NL of [Lam61] has a multiplicative product family. [Gris83] adds a
multiplicative sum family, related to the former by an arrow reversal symmetry.

A −→ C/B iff A⊗B −→ C iff B −→ A\C

B ; C −→ A iff C −→ B ⊕A iff C ⊘A −→ B

NL♢ [MM96] adds a pair of unary residuated operations.

♢A −→ B iff A −→ 2B

Structure Same-sort associativity/commutativity.

Adding ⊗ associativity to NL, one obtains L, the Syntactic Calculus of [Lam58].

Adding ⊗ commutativity to L, one obtains LP, a.k.a. the ⊗,⊸ fragment of ILL
(Intuitionistic Linear Logic). Right/left division /, \ collapse to linear implication ⊸.
Grishin’s right/left difference operations ⊘,; collapse to subtraction A−B.

A⊗ (B ⊗ C) ⇆ (A⊗B)⊗ C ; A⊕ (B ⊕ C) ⇆ (A⊕B)⊕ C

A⊗B −→ B ⊗A ; A⊕B −→ B ⊕A

NL♢: controlled associativity/commutativity, keyed to ♢

(A⊗B)⊗♢C −→ A⊗ (B ⊗♢C) (A⊗B)⊗♢C −→ (A⊗♢C)⊗B

Linear distributivity laws ‘mixed’ associativity and/or commutativity.

One-way ‘entropy laws’ (direction ← or →) or bidirectional isomorphisms.

A; (B ⊗ C) ⇆ (A;B)⊗ C ; (A⊗B)⊘ C ⇆ A⊗ (B ⊘ C)

A; (B ⊗ C) ⇆ B ⊗ (A; C) ; (A⊗B)⊘ C ⇆ (A⊘ C)⊗B

Down the rabbit hole Units, E.M. laws, compactness, . . . �

Unary modalities, structural control

A landscape of logics

Lambek calculi Identity A −→ A, composition A −→ C if A −→ B and B −→ C

Residuation: B −→ A\C iff A •B −→ C iff A −→ C/B

Options: • associativity and/or commutativity; multiplicative unit

Substructural, sublinear a hierarchy of type logics reflecting different views on the
structure of the assumptions Γ in sequent judgements Γ ⊢ A.

logic Γ ass comm

LP multiset ✓ ✓
L string ✓ -

NL tree - -

▶ (N)L: syntactic types

NL types assigned to phrases (bracketed strings); L: types assigned to strings

▶ LP (aka unit-free MILL): semantic types aka unit-free MILL

Models: residuated monoids/groupoids

(N)L intended models for the syntactic calculi are the multiplicative systems freely
generated by the words of the language under concatenation.

Types as sets of expressions, i.e. subsets of a groupoid/semigroup/monoid ⟨M, ·⟩ with

A •B = {a · b ∈M | a ∈ A ∧ b ∈ B}
C/B = {a ∈M | ∀b∈B a · b ∈ C}
A\C = {b ∈M | ∀a∈A a · b ∈ C}
I = {1}

▶ groupoid [L61], types assigned to phrases, bracketed strings

▶ semigroup [L58], types assigned to strings, associative multiplication

▶ monoid [L88], multiplicative unit, empty string

Parsing = deduction

Displaying derivations in N.D. format left of turnstile: words instead of their types

paper

n

that

(n\n)/(s/np)

Bob

np

rejected

(np\s)/np np ⊢ np

rejected · np ⊢ np\s
/E

Bob · (rejected · np) ⊢ s
\E

(Bob · rejected) · np ⊢ s
Ar

Bob · rejected ⊢ s/np
/I

that · (Bob · rejected) ⊢ n\n
/E

paper · (that · (Bob · rejected)) ⊢ n
\E

▶ axiom leaves: lexical type assignments; Ar semi-associativity

▶ /, \E: slash Elim ≃ modus ponens; /, \I: slash Intro ≃ hypothetical reasoning

Alternative formats sequent calculus, display logic, proof nets, . . .

Grammars

A categorial grammar consists of a universal and a language-specific component.

▶ universal: a type calculus, e.g. (N)L

▶ language specific: a lexicon assigning each word a finite number of types

Language Given a categorial grammar G and a type B we write L(G,B) for the
strings of type B recognized by G. w1 · · ·wn ∈ L(G,B) if the following hold:

▶ (wi, Ai) ∈ Lex for 1 ≤ i ≤ n;

▶ Γ[A1,...,An] ⊢ B, for Γ an antecedent structure with yield A1, . . . , An

Idealization?

From syntax to semantics

The classical view compositional interpretation as homomorphism Montague 1970,
Universal Grammar

Source
h−→Target

relating types/proofs of a Source logic to their Target counterparts.

A chained view Interpretation as a two-step process h′′ ◦ h′

Source
h′

−→Targetder
h′′

−→Targetlex

▶ h′ derivational semantics, source constants (words) as black boxes

▶ h′′ lexical semantics, unpacking word-internal semantics

N.D. Proofs and terms: syntactic calculi (N)L/,\

Types, terms p atomic

A,B ::= p | A\B | B/A M,N ::= x | λrx.M | λlx.M | (M ⋉N) | (N ⋊M)

Wansing, 1990, Formulas-as-types for a Hierarchy of Sublogics of Int Prop Logic

Typing rules Axiom x : A ⊢ x : A var Γ,∆ all distinct

Γ · x : A ⊢M : B
Γ ⊢ λrx.M : B/A

I/
x : A · Γ ⊢M : B

Γ ⊢ λlx.M : A\B
I\

Γ ⊢M : B/A ∆ ⊢ N : A

Γ ·∆ ⊢ (M ⋉N) : B
E/

Γ ⊢ N : A ∆ ⊢M : A\B
Γ ·∆ ⊢ (N ⋊M) : B

E\

Compare: LP⊸ L extended with product commutativity, a.k.a. MILL, Multiplicative
Intuitionistic Linear Logic. In MILL, the slashes /, \ collapse to linear implication ⊸.

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A⊸ B
(⊸ I) Γ ⊢M : A⊸ B ∆ ⊢ N : A

Γ,∆ ⊢M N : B
(⊸ E)

From (N)L to LP/MILL

Source atoms: s, np, n; target atoms e (entities), t (truth values).

(N)Ls,np,n
/,\

⌈·⌉
−−−−−−→ LP/MILLe,t⊸

Types ⌈s⌉ = t, ⌈np⌉ = e, ⌈n⌉ = e⊸ t, ⌈A\B⌉ = ⌈B/A⌉ = ⌈A⌉⊸ ⌈B⌉.

Proofs ⌈x⌉ = x̃ translates Axioms; for Intro/Elim rules:

⌈λlx.M⌉ = ⌈λrx.M⌉ = λx̃.⌈M⌉ ⌈N ⋊M⌉ = ⌈M ⋉N⌉ = ⌈M⌉ ⌈N⌉

Example

M = paper⋊ (that⋉ λrx.(Bob⋊ (rejected⋉ x))) : n

⌈M⌉ = ((⌈that⌉ λx.((⌈rejected⌉ x) ⌈Bob⌉)) ⌈paper⌉) : e⊸ t

Remark ⌈·⌉ sends source atoms to target types, not necessarily atomic.

The need for control

▶ languages exhibit phenomena that seem to require some form of

reordering, restructuring, copying

▶ global structural options are problematic

too little (undergeneration), too much (overgeneration)

▶ extended type language with modalities for structural control:

▷ licensing structural reasoning that is lacking by default

▷ blocking structural reasoning that would otherwise be available

Global associativity /

Recall our relative clause example, derivable in L thanks to global associativity.

paper

n

that

(n\n)/(s/np)

Bob

np

rejected

(np\s)/np np ⊢ np

rejected · np ⊢ np\s
/E

Bob · (rejected · np) ⊢ s
\E

(Bob · rejected) · np ⊢ s
Ar

Bob · rejected ⊢ s/np
/I

that · (Bob · rejected) ⊢ n\n
/E

paper · (that · (Bob · rejected)) ⊢ n
\E

▶ not enough restricted to peripheral gaps, but

paper that Bob rejected xx immediately

▶ too much insensitive to island constraints

paper that (Alice reviewed a thesis) and(s\s)/s (B rejected xx)

Modalities for structural control

▶ The type language is extended with a pair of unary connectives ♢,2 satisfying

♢A −→ B

A −→ 2B

▶ Logic: ♢,2 form a residuated pair. One easily shows

compositions: ♢2A −→ A (interior) A −→ 2♢A (closure)

monotonicity: from A −→ B infer ♢A −→ ♢B, 2A −→ 2B

▶ Structure: global rules ; ♢ controlled restricted versions, e.g.

Ar⋄ : (A •B) • ♢C −→ A • (B • ♢C)

Cr⋄ : (A •B) • ♢C −→ (A • ♢C) •B

Multimodal generalization families {♢i,2i}i∈I for particular structural choices

♢,2 inverse duals �

Relational semantics

Frames (W,R2, R3). Valuation v sends types to subsets of W ,

v(A •B) = {x | ∃yz.Rxyz ∧ y ∈ v(A) ∧ z ∈ v(B)}
v(C/B) = {y | ∀xz.(Rxyz ∧ z ∈ v(B))⇒ x ∈ v(C)}
v(A\C) = {z | ∀xy.(Rxyz ∧ y ∈ v(A))⇒ x ∈ v(C)}

v(♢A) = {x | ∃y.(Rxy ∧ y ∈ v(A)}
v(2A) = {y | ∀x.(Rxy ⇒ x ∈ v(A)}

Soundness/completeness Kurtonina 1995 generalizing Došen 1992 for (N)L(P)

Extensions of NL⋄ with weak Sahlqvist postulates are complete w.r.t. the class of 2/3-
ary frames satisfying the corresponding 1st order constraint effectively computable by
the Sahlqvist-van Benthem algorithm.

Weak Sahlqvist postulates A −→ B such that A is built out of single-use atoms and
connectives •,♢; B also is pure •,♢ frm containing at least one occurrence of • or ♢,
with all atoms of B occurring in A.

Control operators: N.D. rules, terms

Structures Unary ⟨⟩ structural counterpart of ♢: Γ,∆ ::= A | ⟨Γ⟩ | Γ ·∆

⟨Γ⟩ ⊢ A
Γ ⊢ 2A 2I

Γ ⊢ 2A
⟨Γ⟩ ⊢ A 2E

Γ ⊢ A
⟨Γ⟩ ⊢ ♢A ♢I

∆ ⊢ ♢A Γ[⟨A⟩] ⊢ B
Γ[∆] ⊢ B ♢E

Γ[⟨A⟩] ⊢ B
Γ[♢A] ⊢ B ♢E

′

shorthand (♢E′) if left premise of (♢E) is an axiom

Control operators: terms Terms: M,N ::= x | . . . | ▽M | △M | ▼M | ▲M

⟨Γ⟩ ⊢M : A

Γ ⊢ ▲M : 2A 2I
Γ ⊢M : 2A
⟨Γ⟩ ⊢ ▼M : A

2E

Γ ⊢M : A
⟨Γ⟩ ⊢ △M : ♢A ♢I

∆ ⊢M : ♢A Γ[⟨x : A⟩] ⊢ N : B

Γ[∆] ⊢ N [▽M/x] : B
♢E

♢E officially: case ▽M of x in N

Controlled associativity/commutativity ,

♢2np: ‘moveable’ np; key-and-lock: contract ♢2np to np, once in place.

paper

n ℓ

that

(n\n)/(s/♢2np)
ℓ

Bob

np ℓ

rejected

(np\s)/np
ℓ

2np ⊢ 2np

⟨2np⟩ ⊢ np
2E

rejected · ⟨2np⟩ ⊢ np\s
/E

immediately

(np\s)\(np\s)
ℓ

(rejected · ⟨2np⟩) · immediately ⊢ np\s
\E

Bob · ((rejected · ⟨2np⟩) · immediately) ⊢ s
\E

Bob · ((rejected · immediately) · ⟨2np⟩) ⊢ s
Cr⋄

(Bob · (rejected · immediately)) · ⟨2np⟩ ⊢ s
Ar⋄

(Bob · (rejected · immediately)) · ♢2np ⊢ s
♢E′

Bob · (rejected · immediately) ⊢ s/♢2np
/I

that · (Bob · (rejected · immediately)) ⊢ n\n
/E

paper · (that · (Bob · (rejected · immediately))) ⊢ n
\E

Ar⋄ : (A •B) • ♢C −→ A • (B • ♢C) Cr⋄ : (A •B) • ♢C −→ (A • ♢C) •B

Proofs and terms

Adjusted lexical meaning recipe for the relative pronoun, (n\n)/(s/♢2np)

⌈that⌉lex = λvλwλz.((w (▼▽ z)) ∧ (v z))

▶ v of type ⌈s/♢2np⌉lex = ♢2e→ t; w of type ⌈n⌉lex = e→ t

▶ z reusable ♢2e variable distributed over the ∧ conjuncts

Proof term M , derivational ⌈M⌉der and lexical ⌈M⌉lex translations:

M = paper⋊ (that⋉ λrx.(Bob⋊ ((rejected⋉ (▼▽ x)))⋊ immediately)) : n

⌈M⌉der = (⌈that⌉ λx.((⌈immediately⌉ (⌈rejected⌉ (▼▽ x))) ⌈Bob⌉)) ⌈paper⌉ : e⊸ t

⌈M⌉lex = λz.((paper (▼▽ z)) ∧ ((immediately (rejected (▼▽ z))) bob)) : ♢2e→ t

Blocking structural rules

Recall the island violations caused by (global or controlled!) associativity:

paper that (Alice reviewed a thesis) but(s\s)/s (Bob rejected xx)

. . .
s

but
(s\2s)/s

B
np

rejected

(np\s)/np
2np ⊢ 2np
⟨2np⟩ ⊢ np

rejected · ⟨2np⟩ ⊢ np\s
/E

B · (rejected · ⟨2np⟩) ⊢ s
\E

but · (B · (rejected · ⟨2np⟩)) ⊢ s\2s
/E

. . . · (but · (B · (rejected · ⟨2np⟩))) ⊢ 2s
\E〈

. . . · (but · (B · (rejected · ⟨2np⟩)))
〉
⊢ s

2E〈
. . . · (but · (B · rejected))

〉
· ⟨2np⟩ ⊢ s

EEE

♢ as an obstacle a modified type assignment imposes the desired island constraint:

▶ but :: (s\2s)/s Morrill 1994, “bracket” modalities

▶ 2 Elim seals off the conjunction as an island from which ⟨2np⟩ cannot escape

One can generalize this idea to demarcate dependency domains . . .

Comparing RES and BANG

Correspondences Similarities more striking than differences, reading !i as ♢i2i
Simulating !i properties as combinations of ♢,2 logical and structural rules, e.g.

Γ ⊢ B
! Γ ⊢ !B

SP

Γ ⊢ B
⟨2⟩Γ ⊢ B 2L

⟨2Γ⟩ ⊢ B K

2Γ ⊢ 2B 2R

MM 1996

Differences some features of RES not shared by BANG

▶ licensing and blocking uses of modalities share same logical rules

▶ components ♢ and 2 have individual uses, cf encoding dependency relations

Resolution? Multitype approach, Palmigiano c.s., arguing that ! cannot be seen as
primitive, but must be deconstructed in heterogeneous adjoint pair ♢■

From postulates to structural rules

Linearity general form of linear structural rules: Moot 2002

Γ[Ξ[∆1, . . . ,∆n]] ⊢ A
Γ[Ξ′[∆π1 , . . . ,∆πn]] ⊢ A

R

▶ Ξ[],Ξ′[] generalized contexts of arity n: C ::= [] | ⟨C⟩ | C · C arity: # holes

▶ Ξ[Γ1, . . . ,Γn] structure obtained by substitution of Γ1, . . . ,Γn in Ξ[] of arity n

Linear, non-increasing R is non-increasing if |Ξ′[]| ≤ |Ξ[]|

▶ number of unary ⟨⟩ in conclusion ≤ in number of ⟨⟩ premise

▶ compare: ♢(A •B) −→ ♢A • ♢B ✓; but not ♢A • ♢B −→ ♢(A •B)

Complexity, expressivity (Moot 2002) NL⋄ + linear, non-increasing structural rules:

▶ decidable; PSPACE complete; recognizes the context-sensitive languages

▶ Mildly CS fragments? Moot 2008, simulating TAGs

Discussion

What about the thesis

grammar = universal type logic + language specific lexicon

Atoms of variation the controlled ass/comm postulates have a certain simplicity

▶ local patterns, global effect through recombinant qualities

▶ correlation with language typology:

English VO relpro (n\n)/(s/♢2np) vs Dutch OV (n\n)/(♢2np\s)

▶ for Serbo-Croatian cf Vermaat, 2006, The logic of variation PhD thesis

Challenges Solutions for more dramatic syn/sem mismatches tend to be laborious

▶ patterns beyond CF, e.g. anbncn, compare naturality of k-MCFG analysis

▶ scope construal of generalized quantifier expressions

https://dspace.library.uu.nl/handle/1874/8128

A radical alternative: going neural

PhD project Kogkalidis meaning composition is directly computed from surface
string, forgoing explicit structural rules

▶ Kogkalidis, 2023, Dependency as Modality, Parsing as Permutation.

Phd Thesis, Utrecht University, Beth Dissertation Award 2024 url

▶ Kogkalidis & MM, 2022, arXiv

Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions

▶ Kogkalidis, MM & Moot, 2020

Neural Proof Nets. CoNLL url

Code: https://github.com/konstantinosKokos/spindle

Online demo: https://parseport.hum.uu.nl/spindle

https://dspace.library.uu.nl/handle/1874/427996
https://doi.org/10.48550/arXiv.2203.12235
https://aclanthology.org/2020.conll-1.3/
https://github.com/konstantinosKokos/spindle
https://parseport.hum.uu.nl/spindle

Challenges

Recall we write L(G,B) for the strings of type B recognized by grammar G.

w1 · · ·wn ∈ L(G,B) if the following hold:

- (wi, Ai) ∈ Lex for 1 ≤ i ≤ n;

- Γ[A1,...,An] ⊢ B, for Γ an antecedent structure with yield A1, . . . , An

▶ type ambiguity: what is the right type for wi given its context?

; supertagging

▶ structural ambiguity: what is the proper structure for Γ to derive B

; parsing: neural proof nets

Integrating supertagging and neural parsing

Neural proof nets The parsing method uses LL proof nets. Proof net construction
can be seen as a staged process:

▶ proof frame: forest of formula decomposition trees — supertagging ,

▶ proof structure: p frame plus pairwise linking of in/out atoms

▶ proof net: p structure with successful traversal

MILL♢,2
⊸ lambda term as byproduct of traversal

Key neural methods

▶ supertagging: parallel tree decoding with dynamic graph convolutions

▶ axiom linking: Sinkhorn iterative method to approach double stochastic matrix

▶ verification: Lamarche traversal method Lamarche 2008

Grishin, polarities, continuations

Some background refs in addition to the abstract bibliography

▶ Curien & Herbelin, The duality of computation, ICFP 2000

▶ Bernardi & MM, ESSLLI 2007 Course Notes:

http://symcg.pbworks.com/f/essllinotesnew.pdf

▶ Bastenhof, Polarized Montagovian Semantics for the Lambek-Grishin Calculus,
FG 2010; Categorial Symmetry, PhD thesis 2013

http://symcg.pbworks.com/f/essllinotesnew.pdf

Road map

On the left the LG source calculus in its various presentations; moving to the right the
target calculi obtained by compositional translations (homomorphisms).

LGa

LGs

≡

LGf

n.f.

MILL⊗,·⊥
⌈·⌉

ΛLGf

CH

ΛMILL⊗,·⊥

⌈·⌉

CH

ΛIL×,→

(·)ℓ

Glossary

- LGa: categorical presentation with arrows f : A −→ B. Atomic types A =
{np, n, s}; connectives {⊗, /, \,⊕,⊘,;}.

- LGs: display sequent calculus. Equivalence LGa ≡ LGs. LGs enjoys cut elimina-
tion. Corollary: decidability, subformula property.

- LGf: focalized LG. Elimination of spurious ambiguity: normal form derivations
through polarity restrictions.

ΛLGf: term language, Curry-Howard isomorphic to LGf proofs.

- MILL⊗,·⊥ : the target logic for derivational semantics. The set of atomic types is
A∪{⊥}; connectives: multiplicative conjunction ⊗, restricted linear implication
·⊸⊥ w.r.t. response type ⊥. ⌈·⌉ translates normal LGf sequent proofs to normal
MILL natural deduction proofs.

ΛMILL⊗,·⊥
: linear lambda calculus in Curry-Howard correspondence with MILL⊗,·⊥ .

- ΛIL×,→ : target term language for lexical semantics. Substitution of (possibly non-
linear) translations for lexical constants in the linear derivational MILL terms.

Lambek-Grishin calculus: categorical presentation

A,B ::= p | atoms: s, np, . . .
A⊗B | B\A | A/B | product, left vs right division
A⊕B | A⊘B | B ;A sum, right vs left difference

Identity, composition of arrows

Residuation laws

f : A⊗B −→ C

▷ f : A −→ C/B

f : A⊗B −→ C

◁ f : B −→ A\C

g : A −→ C/B

▷−1 g : A⊗B −→ C

g : B −→ A\C

◁−1 g : A⊗B −→ C

Dual residuation laws

f : C −→ B ⊕A

◀ f : B ; C −→ A

f : C −→ B ⊕A

▶ f : C ⊘A −→ B

g : B ; C −→ A

◀−1 g : C −→ B ⊕A

g : C ⊘A −→ B

▶−1 g : C −→ B ⊕A

Monotonicity laws

f : A −→ A′ g : B −→ B′

f/g : A/B′ −→ A′/B

f : A −→ A′ g : B −→ B′

f ⊗ g : A⊗B −→ A′ ⊗B′
f : A −→ A′ g : B −→ B′

g\f : B′\A −→ B\A′

Dual monotonicity laws

f : A −→ A′ g : B −→ B′

f ⊘ g : A⊘B′ −→ A′ ⊘B
f : A −→ A′ g : B −→ B′

f ⊕ g : A⊕B −→ A′ ⊕B′
f : A −→ A′ g : B −→ B′

g ; f : B′ ;A −→ B ;A′

Linear distributivity laws (type IV, type I: invert the arrow)

d : (A;B)⊗ C −→ A; (B ⊗ C) b : C ⊗ (B ⊘A) −→ (C ⊗B)⊘A
q : C ⊗ (A;B) −→ A; (C ⊗B) p : (B ⊘A)⊗ C −→ (B ⊗ C)⊘A

Linear distributivity laws (rule form)

f : A⊗B −→ C ⊕D

d. f : C ;A −→ D/B

f : A⊗B −→ C ⊕D

b. f : B ⊘D −→ A\C

f : A⊗B −→ C ⊕D

q̇ f : C ;B −→ A\D

f : A⊗B −→ C ⊕D

ṗ f : A⊘D −→ C/B

Exercise

For each distributivity law, Grishin gives six interderivable forms.

(a) (b\c)⊘ a −→ b\(c⊘ a) (d) (a\c) ; b −→ c; (a⊗ b)
(b) b\(c⊕ a) −→ (b\c)⊕ a (e) (a⊕ b)/c −→ a/(c⊘ b)
(c) a⊗ (c⊘ b) −→ (a⊗ c)⊘ b (f) a⊘ (b; c) −→ (c/a)\b

Prove (a)–(f), and give their combinator name.

Kripke relational interpretation MM & Kurtonina 2010

v(A⊗B) = {x | ∃yz.R⊗xyz ∧ y ∈ v(A) ∧ z ∈ v(B)}
v(C/B) = {y | ∀xz.(R⊗xyz ∧ z ∈ v(B))⇒ x ∈ v(C)}
v(A\C) = {z | ∀xy.(R⊗xyz ∧ y ∈ v(A))⇒ x ∈ v(C)}

v(A⊕B = {x | ∀yz.R⊕xyz ⇒ (y ∈ v(A) ∨ z ∈ v(B))}
v(C ⊘B) = {y | ∃xz.R⊕xyz ∧ z ̸∈ v(B) ∧ x ∈ v(C)}
v(A; C) = {z | ∃xy.R⊕xyz ∧ y ̸∈ v(A) ∧ x ∈ v(C)}

LGs: display sequent calculus

Display sequent calculus:

▶ connective left and a right intro rule, cf regular Gentzen sequent calculus

▶ structural proxy for each of the connectives, not just for ⊗ and ⊕.

We use the same symbol for the logical connective and its structural counterpart,
using centerdots to set off the structural version.

▶ LGs enjoys cut elimination, but suffers from spurious ambiguity

Coming soon: a focalized version; source calculus for compositional, continuation-
based interpretation

Sequents of the form I ⊢ O, where I is an input structure, O an output structure.
Structures are built out of formulas F by means of the grammar below.

I ::= F | I · ⊗ · I | I · ⊘ · O | O ·; · I
O ::= F | O · ⊕ · O | I · \ · O | O · / · I (1)

In the rules below, A,B, . . . are formula variables, X,Y, . . . structure variables.

Structural rules The (dual) residuation laws of the categorical presentation here take
the form of structural rules. They guarantee that any formula component of a structure
can be displayed on its own, left or right of the turnstile. Grishin’s distributivity
principles, similarly, are expressed at the structural level.

A ⊢ A Ax
X ⊢ A A ⊢ Y

X ⊢ Y Cut

X ⊢ Z · / · Y
X · ⊗ · Y ⊢ Z

rp

Y ⊢ X · \ · Z
rp

Y ·; · Z ⊢ X
Z ⊢ Y · ⊕ ·X drp

Z · ⊘ ·X ⊢ Y drp

X · ⊗ · Y ⊢ Z · ⊕ ·W
Z ·; ·X ⊢W · / · Y G1

X · ⊗ · Y ⊢ Z · ⊕ ·W
Y · ⊘ ·W ⊢ X · \ · Z G3

X · ⊗ · Y ⊢ Z · ⊕ ·W
Z ·; · Y ⊢ X · \ ·W G2

X · ⊗ · Y ⊢ Z · ⊕ ·W
X · ⊘ ·W ⊢ Z · / · Y G4

Logical rules Each logical connective has a rewrite rule which replaces the logical
operation by its structural proxy. In the presence of Cut, the rewrite rules are invertible.

A · $ ·B ⊢ Y
A $B ⊢ Y

$L $ ∈ {⊗,;,⊘} X ⊢ A ·# ·B
X ⊢ A#B

#R # ∈ {⊕, /, \}

In the remaining rules, ($R) for $ ∈ {⊗,;,⊘} and (#L) for # ∈ {⊕, /, \}, we
recognize the monotonicity principles.

X ⊢ A Y ⊢ B
X · ⊗ · Y ⊢ A⊗B ⊗R

A ⊢ X B ⊢ Y
A⊕B ⊢ X · ⊕ · Y ⊕L

X ⊢ A B ⊢ Y
A\B ⊢ X · \ · Y

\L X ⊢ A B ⊢ Y
X · ⊘ · Y ⊢ A⊘B ⊘R

X ⊢ A B ⊢ Y
B/A ⊢ Y · / ·X

/L X ⊢ A B ⊢ Y
Y ·; ·X ⊢ B ;A

;R

Cut elimination The rules satisfy Belnap’s (JPL, 1982) conditions for cut-elimination.

LGf: focused sequent calculus

Three types of sequent: neutralX ⊢ Y , right focusedX ⊢ A and left focused A ⊢ Y .

▶ neutral sequents: display rules, distributivity rules and invertible rewrite rules
operate on neutral sequents.

▶ applicability of the remaining rules is constrained by the polarity of the formulas
in focus.

▷ formulas with invertible left introduction rule are positive (⊗,;,⊘);
▷ formulas with invertible right introduction rule are negative (⊕, /, \).
▷ atomic formulas are assigned an arbitrary polarity bias.

Axiom, Co-axiom In the (Ax) case, A has to be positive; in the (CoAx) case A is
negative.

A ⊢ A
Ax

A ⊢ A
CoAx

Focusing, Defocusing The rules in the left column have A negative; for those in the
right column, A has to be positive.

A ⊢ Y
A ⊢ Y

↼
X ⊢ A

X ⊢ A
⇀

X ⊢ A
X ⊢ A

⇁ A ⊢ Y
A ⊢ Y

↽

Monotonicity rules The non-invertible rules transfer the focus from a complex for-
mula to its subformulae.

X ⊢ A Y ⊢ B

X · ⊗ · Y ⊢ A⊗B
⊗R

A ⊢ X B ⊢ Y
A⊕B ⊢ X · ⊕ · Y

⊕L

X ⊢ A B ⊢ Y
A\B ⊢ X · \ · Y

\L X ⊢ A B ⊢ Y
X · ⊘ · Y ⊢ A⊘B

⊘R

X ⊢ A B ⊢ Y
B/A ⊢ Y · / ·X

/L
X ⊢ A B ⊢ Y
Y ·; ·X ⊢ B ;A

;R

Exercise Below a derivation for ‘Alice thinks everybody left’, where ‘everybody’ is
typed s/(np\s). With the atom bias discussed in class (s negative, other atoms posi-
tive), there is only one derivation obeying the polarity restrictions. Fom the backward
chaining perspective (conclusion to axioms), this derivation first activates the type for
‘thinks’ (np\s)/s; activation of the type for ‘everybody’ s/(np\s) is delayed to the
point where the embedded sentence ‘everybody left’ is derived.

Try the opposite order of activation (s/(np\s) before (np\s)/s), and show where/why
the derivation crashes.

(You can silently perform a sequence of residuation inferences, started and ended with
(de)focusing, for example ⇋ below.)

A ⊢ Y
X ⊢ B

⇋
abbreviates

A ⊢ Y
(residuation steps)

↼

X ⊢ B
⇁

np ⊢ np s ⊢ s

np\s ⊢ np · \ · s
(\L)

s ⊢ s

np ⊢ np s ⊢ s

np\s ⊢ np · \ · s
(\L)

np\s ⊢ np · \ · s
↼

np\s ⊢ np\s
(\R)

np\s ⊢ np\s
⇁

s/(np\s) ⊢ s · / · (np\s)
(/L)

s/(np\s) ⊢ s · / · (np\s)
↼

(s/(np\s)) · ⊗ · (np\s) ⊢ s
(s/(np\s)) · ⊗ · (np\s) ⊢ s

⇁

(np\s)/s ⊢ (np · \ · s) · / · ((s/(np\s)) · ⊗ · (np\s))
(/L)

(np\s)/s ⊢ (np · \ · s) · / · ((s/(np\s)) · ⊗ · (np\s))
↼

((np\s)/s) · ⊗ · ((s/(np\s)) · ⊗ · (np\s)) ⊢ np · \ · s
np · ⊗ · (((np\s)/s) · ⊗ · ((s/(np\s)) · ⊗ · (np\s))) ⊢ s
np · ⊗ · (((np\s)/s) · ⊗ · ((s/(np\s)) · ⊗ · (np\s))) ⊢ s

⇁

Solution The attempt below displays the s/(np\s) formula, brings it in focus and
tries to decompose it by means of (/L). In order to proceed, the left premise with
focused s would have to be turned into a neutral sequent by (↽). But this rule
requires a positive formula, and s has negative bias.

�
s ⊢ ((np\s)/s) · \ · (np · \ · s)

↽

...

np\s ⊢ np\s
⇁

s/(np\s) ⊢ (((np\s)/s) · \ · (np · \ · s)) · / · (np\s)
(/L)

s/(np\s) ⊢ (((np\s)/s) · \ · (np · \ · s)) · / · (np\s)
↼

(s/(np\s)) · ⊗ · (np\s) ⊢ ((np\s)/s) · \ · (np · \ · s)
((np\s)/s) · ⊗ · ((s/(np\s)) · ⊗ · (np\s)) ⊢ np · \ · s
np · ⊗ · (((np\s)/s) · ⊗ · ((s/(np\s)) · ⊗ · (np\s))) ⊢ s

LGf: proofs and terms

ΛLGf: term language in Curry-Howard (i.e. 1-to-1) correspondence with LGf proofs.

ΛLGf has three types of terms, corresponding to the three types of sequents: values for
sequents with focus right; evaluation contexts for sequents with focus left; commands
for neutral sequents.

The grammar of raw terms is given below.

v ::= µα.C | V ; V ::= x | v1 ⊗ v2 | v ⊘ e | e; v

e ::= µ̃x.C | E ; E ::= α | e1 ⊕ e2 | v\e | e/v

c ::= ⟨x ↿ E⟩ | ⟨V ↾ α⟩

C ::= c | x y
z
.C | x β

z
.C | β x

z
.C | α β

γ
.C | x β

γ
.C | β x

γ
.C

Typing rules LGf inference rules as typing rules for the raw term language.

x : A ⊢ x : A
Ax

α : A ⊢ α : A
CoAx

In the (⇁), (↽) rules, µ, µ̃ are binding the (co)variables α, x.

E : A ⊢ Y
x : A ⊢

⟨x↿E⟩
Y
↼

X ⊢ V : A

X ⊢
⟨V ↾α⟩

α : A
⇀

X
C

⊢ α : A

X ⊢ µα.C : A
⇁ x : A

C

⊢ Y
µ̃x.C : A ⊢ Y

↽

Typing rules (cont’d) Rewrite rules take a structure consisting of two labelled formu-
las in the premise and replace it by a labelled formula in the conclusion. Below the rules
for (⊗L) and (⊘L). For the other rewrite rules, apply the (·)♮ and (·)† symmetries.

x : A · ⊗ · y : B
C

⊢ X
z : A⊗B ⊢

x y
z .C

X
⊗L

x : A · ⊘ · β : B
C

⊢ X
z : A⊘B ⊢

x β
z .C

X
⊘L

Non-invertible monotonicity rules simply use the connective symbols in the term lan-
guage to record the logical rule applied. Add the (·)♮ and (·)† symmetric cases.

e1 : B ⊢ Y e2 : A ⊢ X
e1 ⊕ e2 : B ⊕A ⊢ Y · ⊕ ·X

⊕L
e : B ⊢ Y X ⊢ v : A

e/v : B/A ⊢ Y · / ·X
/L

The structural rules (display rules, distributivity rules) leave no trace in the term as
they do not affect the interpretation.

Compositional interpretation: from LGf to MILL⊗,·⊥

LGf MILL⊗,·⊥
⌈·⌉

ΛLGf

CH

ΛMILL⊗,·⊥

⌈·⌉

CH

The map ⌈·⌉ sends LGf sequent derivations/terms to Natural Deduction proofs/terms
in MILL⊗,·⊥ .

▶ MILL⊗,·⊥ : the fragment of Multiplicative Intuitionistic Logic with linear products
and restricted implications A⊸⊥

▶ atom ⊥: response type; A⊸⊥ abbreviates as A⊥.

Interpretation: types By taking into account the polarities, the interpretation of
types avoids the ‘bureaucratic redexes’ we saw in the Plotkin/Barker translations. For
positive atoms ⌈p⌉ = p; for atoms with negative bias ⌈p⌉ = p⊥. Complex types:

positive A B ⌈A⊗B⌉ ⌈A⊘B⌉ ⌈B ;A⌉
− − ⌈A⌉⊥ ⊗ ⌈B⌉⊥ ⌈A⌉⊥ ⊗ ⌈B⌉ ⌈B⌉ ⊗ ⌈A⌉⊥

− + ⌈A⌉⊥ ⊗ ⌈B⌉ ⌈A⌉⊥ ⊗ ⌈B⌉⊥ ⌈B⌉⊥ ⊗ ⌈A⌉⊥

+ − ⌈A⌉ ⊗ ⌈B⌉⊥ ⌈A⌉ ⊗ ⌈B⌉ ⌈B⌉ ⊗ ⌈A⌉
+ + ⌈A⌉ ⊗ ⌈B⌉ ⌈A⌉ ⊗ ⌈B⌉⊥ ⌈B⌉⊥ ⊗ ⌈A⌉

negative A B ⌈A/B⌉ ⌈B\A⌉ ⌈A⊕B⌉
− − ⌈A⌉ ⊗ ⌈B⌉⊥ ⌈B⌉⊥ ⊗ ⌈A⌉ ⌈A⌉ ⊗ ⌈B⌉
− + ⌈A⌉ ⊗ ⌈B⌉ ⌈B⌉ ⊗ ⌈A⌉ ⌈A⌉ ⊗ ⌈B⌉⊥

+ − ⌈A⌉⊥ ⊗ ⌈B⌉⊥ ⌈B⌉⊥ ⊗ ⌈A⌉⊥ ⌈A⌉⊥ ⊗ ⌈B⌉
+ + ⌈A⌉⊥ ⊗ ⌈B⌉ ⌈B⌉ ⊗ ⌈A⌉⊥ ⌈A⌉⊥ ⊗ ⌈B⌉⊥

Interpretation: proofs/terms The monotonicity rules uniformly translate as linear
pairs, with the translation of the rewrite rules as the matching case construct. Ap-
plication/abstraction at the MILL target end arise as the image of the (de)focusing
rules.

(co)var: ⌈x⌉ = x̃ ; ⌈α⌉ = α̃

linear application: ⌈⟨x ↿ E⟩⌉ = (x̃ ⌈E⌉) ; ⌈⟨V ↾ α⟩⌉ = (α̃ ⌈V ⌉)

linear abstraction: ⌈µ̃x.C⌉ = λx̃.⌈C⌉ ; ⌈µα.C⌉ = λα̃.⌈C⌉

linear pair: ⌈ϕ#ψ⌉ = ⟨⌈ϕ⌉, ⌈ψ⌉⟩ (# ∈ {⊗, /, \,⊕,⊘,;})

case: ⌈ϕ ψ
ξ
.C⌉ = case ξ̃ of ⟨ϕ̃, ψ̃⟩.⌈C⌉

In order to extend ⌈·⌉ to sequents, add negation for the type of negative hypotheses
and positive conclusions.

A ⌈x : A⌉ ⌈α : A⌉

+ x̃ : ⌈A⌉ α̃ : ⌈A⌉⊥

− x̃ : ⌈A⌉⊥ α̃ : ⌈A⌉

Effect of the translation Normal (i.e. cut free) LGf sequent proofs are mapped to
normal (i.e. redex free) MILL⊗,·⊥ N.D. proofs:

source: LGf sequent proofs ; target: MILL⊗,·⊥ N.D. proofs

X
C

⊢ Y ; ⌈X⌉, ⌈Y ⌉ ⊢ ⌈C⌉ :⊥

X ⊢ v : A ; ⌈X⌉ ⊢ ⌈v⌉ : ⌈A⌉ (A : +)

; ⌈X⌉ ⊢ ⌈v⌉ : ⌈A⌉⊥ (A : −)

e : A ⊢ Y ; ⌈Y ⌉ ⊢ ⌈e⌉ : ⌈A⌉ (A : −)

; ⌈Y ⌉ ⊢ ⌈e⌉ : ⌈A⌉⊥ (A : +)

Example We compute the interpretation of (†) (negative bias for s, positive for np, n).

(†) ((some : (np/n) · ⊗ · teacher : n) · ⊗ · left : (np\s)) ⊢ s

y

np ⊢ np

α

s ⊢ s

(np\s) ⊢ (np · \ · s)
(\L)

(np\s) ⊢ (np · \ · s)
↼

(np · ⊗ · (np\s)) ⊢ s
np ⊢ (s · / · (np\s))
np ⊢ (s · / · (np\s))

↽
⌈teacher⌉
n ⊢ n

(np/n) ⊢ ((s · / · (np\s)) · / · n)
(/L)

(np/n) ⊢ ((s · / · (np\s)) · / · n)
↼

((np/n) · ⊗ · n) ⊢ (s · / · (np\s))
(((np/n) · ⊗ · n) · ⊗ · (np\s)) ⊢ s
(((np/n) · ⊗ · n) · ⊗ · (np\s)) ⊢ s

⇁

⌈†⌉ = λα.(⌈some⌉⌈np/n⌉
⊥
⟨λy.(⌈left⌉⌈np\s⌉

⊥
⟨ynp, αs

⊥
⟩), ⌈teacher⌉n⟩) :: s⊥⊥

Lexical semantics: from MILL to IL

ΛLGf ΛMILL⊗,·⊥

⌈·⌉
ΛIL×,→

(·)ℓ

For ⌈·⌉ the interpretation of lexical constants is a ‘black box’.

The (·)ℓ map unpacks the lexical constants.

▶ constants are assigned a λ term of type (⌈·⌉(⊥))ℓ

▶ the ·ℓ translation is an IL term: non-linear recipes are allowed

Types Target atoms e (entities), t (booleans). Response type interpreted as t

npℓ = e ; nℓ = e→ t ; sℓ =⊥ℓ= t

Complex types: replace linear by corresponding IL operations:

(A⊗B)ℓ = Aℓ ×Bℓ ; (A⊸ B)ℓ = Aℓ → Bℓ

Lexical sample Some lexical entries given bias s : −, np, n : +.

You can convince yourself that the given terms are welltyped as {·}ℓ.

source type constant {·}ℓ

np\s left λ⟨x, c⟩.(c (leftet x))

(np\s)/np likes λ⟨⟨x, c⟩, y⟩.(c (likeeet y x))

(np/n)⊗ n everyone ⟨λ⟨x, y⟩.(∀ λz.(⇒ (y z) (x z))), personet⟩

np/n some λ⟨x, y⟩.(∃ λz.(∧ (y z) (x z)))

n girl girlet

(np\s)/s thinks λ⟨⟨x, c⟩, q⟩.(c (think((tt)t)et q x))

s/(np\s) everybody λ⟨c, v⟩.(c (∀ λx.(v ⟨x, id⟩)))

Notation: {·} is ⌈·⌉ for positive types, ⌈·⌉⊥ for negatives.

λ⟨x, y⟩.M is λz.M [x/π0z, y/π1z] (π0, π1 first/second projection of pair term);

id : identity function λpt.p.

Scope construal

▶ local construal: 2 interpretations for “every student likes some teacher”

λα.(⌈every⌉ ⟨λy.(⌈some⌉ ⟨λz.(⌈likes⌉ ⟨⟨y, α⟩, z⟩), ⌈teacher⌉⟩), ⌈student⌉⟩)
λα.(∀ λz.((⇒ (student z)) (∃ λy.((∧ (teacher y)) (α ((likes y) z))))))

λα.(⌈some⌉ ⟨λy.(⌈every⌉ ⟨λz.(⌈likes⌉ ⟨⟨z, α⟩, y⟩), ⌈student⌉⟩), ⌈teacher⌉⟩)
λα.(∃ λz.((∧ (teacher z)) (∀ λy.((⇒ (student y)) (α ((likes z) y))))))

▶ non-local construal: 2 interpretations for “Alice thinks some student left”

λα.(⌈thinks⌉ ⟨⟨⌈alice⌉, α⟩, λβ.(⌈some⌉ ⟨λz.(⌈left⌉ ⟨z, β⟩), ⌈student⌉⟩)⟩)
λα.(α ((thinks λβ.(∃ λx.((∧ (student x)) (β (left x))))) alice))

λα.(⌈some⌉ ⟨λy.(⌈thinks⌉ ⟨⟨⌈alice⌉, α⟩, λγ.(⌈left⌉ ⟨y, γ⟩)⟩), ⌈student⌉⟩)
λα.(∃ λz.((∧ (student z)) (α ((thinks λγ.(γ (left z))) alice))))

polarity bias s : −, np, n : +

Summarizing

Focusing regime + attendant continuation semantics optimizes syn/sem interface:

▶ , determiners are uniformly typed as np/n; desired sem type (et)(et)t results
from CPS translation

▶ / compare: syntactic complications (s/(np\s))/n etc motivated by purely se-
mantic considerations; ad hoc extra typings or structural rules

To do How to delimit non-local construal?

▶ “Alice thinks some student left” has a ∃ > thinks interpretation; “Alice thinks
every student left” only thinks > ∀

▶ imposing locality by means of ♢,2 (cf Part 1) won’t do: the unary modalities
are transparant for residuation inferences

More To Do . . .

The scope construal case study is couched entirely within the NL fragment of LG.

Are there convincing uses of the Grishin connectives/linear distributivities in linguistics?

▶ Moot (2008) uses LG to simulate the adjunction operation of TAG, a key example
of a mildly context-sensitive formalism; but

▶ Melissen (2009): LG has recognizing capacity beyond MCS

▶ apart from these formal grammar studies, are there actual NLP uses?

2

