Two Extensions of Lambek Calculus

Michael Moortgat, Utrecht University

LAP 2025, Dubrovnik

Direr, Melencolia |, 1514

Plan

SWOT Strengths and weaknesses of two extensions of Lambek Calculus:

» Unary modalities, structural control
running example: relative clauses
» Grishin, polarities, continuations

scope construal

But first a little appetizer ...

Bluff your way in grammar logics

Grammar logics in the style of [Lam68] ‘Deductive systems as categories’. One starts
from Id/Composition, plus inference rules characterizing the logical properties of the
type-forming operations. As further add-ons, one can then add structural postulates.

A—B B—C
A— A A—C

Logic Laws of adjointness. At the core of the grammar logics are residuated families.
The base logic NL of [Lam61] has a multiplicative product family. [Gris83] adds a
multiplicative sum family, related to the former by an arrow reversal symmetry.

A— C/B iff A®B—C iff B — A\C

BOC —A ff C—B®A iff CoA—B
NL¢ [MMO96] adds a pair of unary residuated operations.

OA— B iff A— OB

Structure Same-sort associativity/commutativity.
Adding ® associativity to NL, one obtains L, the Syntactic Calculus of [Lam58].

Adding ® commutativity to L, one obtains LP, a.k.a. the ®, — fragment of ILL
(Intuitionistic Linear Logic). Right/left division /,\ collapse to linear implication —o.
Grishin's right/left difference operations @, ® collapse to subtraction A — B.

AR(B®(C)S (A®B)®C ; A (BaoC)S (AeB)aC
A®B—B®A ; APB—B@A

NL: controlled associativity/commutativity, keyed to <
(A® B)® OC — A® (B® OC) (A B)@ OC — (A®OC)® B

Linear distributivity laws ‘mixed’ associativity and/or commutativity.

One-way ‘entropy laws' (direction <— or —) or bidirectional isomorphisms.
A9(B®(C)S (AOB)®C ; (A®B)oCSA®(BOCOC)
has

A9(B®C)SBR(ASC) ; (A®B)0CS(A0C)®B

Down the rabbit hole Units, E.M. laws, compactness, ... @

Unary modalities, structural control

A landscape of logics

Lambek calculi ldentity A — A, composition A — C if A— B and B— C
Residuation: B— A\C iff AeB—C iff A— C/B

Options: e associativity and/or commutativity; multiplicative unit

Substructural, sublinear a hierarchy of type logics reflecting different views on the
structure of the assumptions I' in sequent judgements I" - A.

LOGIC r ASS COMM

LP multiset v
L string v -
NL tree - -
» (N)L: syntactic types
NL types assigned to phrases (bracketed strings); L: types assigned to strings

» LP (aka unit-free MILL): semantic types aka unit-free MILL

Models: residuated monoids/groupoids

(N)L intended models for the syntactic calculi are the multiplicative systems freely
generated by the words of the language under concatenation.

Types as sets of expressions, i.e. subsets of a groupoid/semigroup/monoid (M, -} with

AeB = {a-beM|ac ANbe B}
C/B = {a€M|Vyepa-beC}
A\C = {be M |Vecaa-beC}
= {1}

» groupoid [L61], types assigned to phrases, bracketed strings
» semigroup [L58], types assigned to strings, associative multiplication

» monoid [L88], multiplicative unit, empty string

Parsing = deduction

Displaying derivations in N.D. format left of turnstile: words instead of their types

rejected

Bob (np\s)/np np = np

/E
np rejected - np - np\s

Bob - (rejected - np) F s

T

that (Bob - rejected) - np F s
paper (n\n)/(s/np) Bob - rejected - s/np
n that - (Bob - rejected) - n\n
\E

paper - (that - (Bob - rejected)) Fn

P axiom leaves: lexical type assignments; A" semi-associativity

» /,\E: slash Elim ~ modus ponens; /,\I: slash Intro ~ hypothetical reasoning

Alternative formats sequent calculus, display logic, proof nets, ...

Grammars
A categorial grammar consists of a universal and a language-specific component.

» universal: a type calculus, e.g. (N)L

» language specific: a lexicon assigning each word a finite number of types

Language Given a categorial grammar G and a type B we write L(G, B) for the
strings of type B recognized by G. wy - - - w, € L(G, B) if the following hold:

> (wi, A;) € Lex for 1 < i < n;

» I'{4,,..4, F B, for I an antecedent structure with yield A;,..., A,

Idealization?

From syntax to semantics

The classical view compositional interpretation as homomorphism Montague 1970,
Universal Grammar

h
Source—>Target

relating types/proofs of a Source logic to their Target counterparts.
A chained view Interpretation as a two-step process h” o h/

h/ h//
Source—> Target g, —> Target e,

» h' derivational semantics, source constants (words) as black boxes

» h” lexical semantics, unpacking word-internal semantics

N.D. Proofs and terms: syntactic calculi (N)L,\

Types, terms p atomic
A,B:=p|A\B|B/A M,N :=x | N'a.M | Na.M | (M x N) | (N x M)

Wansing, 1990, Formulas-as-types for a Hierarchy of Sublogics of Int Prop Logic

Typing rules Axiom x: AFx: A var I', A all distinct

F'x:AI—M:BI/ x:A«I‘I—M:BI\
'EXNax.M:BJ/A '+ Mz M : A\B

'M:B/A AFN:A / 'EN:A AR M:A\B
T-AF(MxN):B T-AF(NxM):B

E\
Compare: LP_, L extended with product commutativity, a.k.a. MILL, Multiplicative
Intuitionistic Linear Logic. In MILL, the slashes /,\ collapse to linear implication —o.

Lx:A-M:B (— I) 'HFM:A—oB AI—N:A(
'FXx.M:A—oB I'A+M N:B

—oE')

From (N)L to LP/MILL

Source atoms: s, np,n; target atoms e (entities), ¢ (truth values).
(N)L) 7" % LP/MILL®!

Types [s] =t [np] = e, [n] =e —t, [A\B] = [B/A] = [A] — [B].

Proofs [z] = Z translates Axioms; for Intro/Elim rules:

Na.M] = [Nz.M] =Xe.[M] [N xM]=[MxN]=[M][N]

Example

M = paper x (that X A"z.(Bob x (rejected X 2))) : n
[M] = (([that] Az.(([rejected] z) [Bob])) [paper]|):e —ot

Remark [-] sends source atoms to target types, not necessarily atomic.

The need for control

» languages exhibit phenomena that seem to require some form of
reordering, restructuring, copying

» global structural options are problematic
too little (undergeneration), too much (overgeneration)

» extended type language with modalities for structural control:

> licensing structural reasoning that is lacking by default

> blocking structural reasoning that would otherwise be available

Global associativity ®

Recall our relative clause example, derivable in L thanks to global associativity.

rejected

Bob (np\s)/np npt np
np rejected - np - np\s

JE

Bob - (rejected - np) F s

A’I‘
that (Bob - rejected) - np F s p
paper (n\n)/(s/np) Bob - rejected F s/np
n that - (Bob - rejected) - n\n

\E

paper - (that - (Bob - rejected)) Fn

» not enough restricted to peripheral gaps, but
paper that Bob rejected immediately
» too much insensitive to island constraints

paper that (Alice reviewed a thesis) and,\,)/s (B rejected)

Modalities for structural control

» The type language is extended with a pair of unary connectives), O satisfying

SA — B
A — OB

» Logic: &, O form a residuated pair. One easily shows

compositions: $OA — A (interior) A — 0O A (closure)
monotonicity: from A — B infer A — B, 0A — OB

» Structure: global rules ~ <{> controlled restricted versions, e.g.

A,: (AeB)e{C —r Ae(Be ()
Ci: (AeB)eC — (AeC)e B

Multimodal generalization families {<»;, O0;};cs for particular structural choices

&, 0O inverse duals @

Relational semantics

Frames (W, R%, R®). Valuation v sends types to subsets of W,

v(AeB) = {z|3Jyz.RryzAy € v(A)Azecv(B)}
v(C/B) = {y|Vaz.(RzyzAz€ev(B))=zecv(C)}
v(A\C) = {z|Vazy.(RzyzAy€ev(A)) =zecv(C)}
v(QCA) = {z|3Jy.(Rey Ay e v(A)}
v(0A) = {y|Vz.(Rzy=x € v(A)}

Soundness/completeness Kurtonina 1995 generalizing Dogen 1992 for (N)L(P)

Extensions of NL, with weak Sahlqvist postulates are complete w.r.t. the class of 2/3-
ary frames satisfying the corresponding 1st order constraint effectively computable by
the Sahlqvist-van Benthem algorithm.

Weak Sahlqvist postulates A — B such that A is built out of single-use atoms and
connectives o, {>; B also is pure e, {> frm containing at least one occurrence of e or <>,
with all atoms of B occurring in A.

Control operators: N.D. rules, terms

Structures Unary () structural counterpart of $: TVA = A | (D) [T- A

IHEA LFoA

r+oa 21 AP

A AFOA T[(A)|FB r(AF-B
Ty oa 01 T[A]F B °F toars OF

shorthand (QFE’) if left premise of (OF) is an axiom

Control operators: terms Terms: M,Nu=xz|...|VM |AM |VYM | AM
HHFM:A .
I a1 LEM:0A o
I'-aAM:0A ITYFYM: A
TEM:A or AFM:Q A T[{z: A]JFN:B

T)F aM:OA T[A]F N[V M/z] : B

OF officially: case V. M of x in N

Controlled associativity/commutativity ©

{$Onp: ‘moveable’ np; key-and-lock: contract {Onp to np, once in place.

rejected Onp F Onp
L or
(np\s)/np (Onp) F np = immediately
L
Bob rejected - (Onp) - np\s (np\s)\ (np\s)
np (rejected - (Onp)) - immediately - np\s

Bob - ((rejected - (Onp)) - immediately) F s

Bob - ((rejected - immediately) - (Onp)) F s

r

that (Bob - (rejected - immediately)) - SOnp b s

V4
paper (n\n)/(s/$0Onp) Bob -
n ¢ that - (Bob - (rejected - immediately)) F n\n

(
(
(Bob - (rejected - immediately)) - (Onp) +
()
(

rejected - immediately) - s/ 0Onp

paper - (that - (Bob - (rejected - immediately))) - n

A7

(AeB)e(C — Ae (Be () C;

5 (AeB)edC —r (AeHC)eB

Proofs and terms

Adjusted lexical meaning recipe for the relative pronoun, (n\n)/(s/{0Onp)

[that]"® = AvdwAz.((w (VY V 2)) A (v 2))

» v of type [s/OOnplle® = SOe — t; w of type [n]!* =e — t

» =z reusable {Oe variable distributed over the A conjuncts

Proof term M, derivational [M]%" and lexical [M]"® translations:

M = paper X (that X A"z.(Bob x ((rejected X (¥ V x))) x immediately)) : n
[M]%" = ([that] Az.(([immediately] ([rejected] (¥ V z))) [Bob])) [paper] : e —o t
|’M‘| lex

Az.((PAPER (V¥ V 2)) A ((IMMEDIATELY (REJECTED (V¥ V 2))) BOB)) : {Oe — ¢

Blocking structural rules

Recall the island violations caused by (global or controlled!) associativity:

paper that (Alice reviewed a thesis) but(,\,)/s (Bob rejected)

rejected Onp - Onp
g (mp\s)/np (Onp)F np y
but np rejected - (Onp) - np\s \E
o (s\Os)/s B - (rejected - (Onp)) F s B
s but - (B - (rejected - (Onp))) F s\Os

... - (but- (B - (rejected - (Onp)))) F Os \E

(... (but- (B- (rejected - (Onp))))) s
(... (but- (B - rejected))) - (Onp) - s

{> as an obstacle a modified type assignment imposes the desired island constraint:

> but:: (s\Os)/s Morrill 1994, “bracket” modalities

» 0O Elim seals off the conjunction as an island from which (Onp) cannot escape

One can generalize this idea to demarcate dependency domains . ..

Comparing RES and BANG

Correspondences Similarities more striking than differences, reading !; as {;0;

Simulating !; properties as combinations of <}, 0 logical and structural rules, e.g.

reB
O F B

'+ B (o) - B

t15°F orrop©

MM 1996

Differences some features of RES not shared by BANG

» licensing and blocking uses of modalities share same logical rules

» components {» and O have individual uses, cf encoding dependency relations

Resolution? Multitype approach, Palmigiano c.s., arguing that ! cannot be seen as
primitive, but must be deconstructed in heterogeneous adjoint pair $GHl

From postulates to structural rules

Linearity general form of linear structural rules:

Moot 2002
F[E[A, ..., Ay]]HA
P& Bryy - An] F AT
» =[], Z'[] generalized contexts of arity n: C :=1[] | (C) |C-C arity: # holes
» ZEly,...

, I'y] structure obtained by substitution of I'1,..., T, in Z]] of arity n

Linear, non-increasing R is non-increasing if |Z'[]] < |Z[]|

» number of unary () in conclusion < in number of () premise

» compare: $(AeB) — SAe B v": but not OAe OB — H(AeB)
Complexity, expressivity (Moot 2002) NL, + linear, non-increasing structural rules

» decidable; PSPACE complete; recognizes the context-sensitive languages

» Mildly CS fragments? Moot 2008, simulating TAGs

Discussion
What about the thesis
grammar = universal type logic + language specific lexicon
Atoms of variation the controlled ass/comm postulates have a certain simplicity

» local patterns, global effect through recombinant qualities
» correlation with language typology:
English VO relpro (n\n)/(s/<&0np) vs Dutch OV (n\n)/({Onp\s)

» for Serbo-Croatian cf Vermaat, 2006, The logic of variation PhD thesis

Challenges Solutions for more dramatic syn/sem mismatches tend to be laborious

» patterns beyond CF, e.g. a™b™c™, compare naturality of k.-MCFG analysis

» scope construal of generalized quantifier expressions

https://dspace.library.uu.nl/handle/1874/8128

A radical alternative: going neural

PhD project Kogkalidis meaning composition is directly computed from surface
string, forgoing explicit structural rules

» Kogkalidis, 2023, Dependency as Modality, Parsing as Permutation.

Phd Thesis, Utrecht University, Beth Dissertation Award 2024 url
» Kogkalidis & MM, 2022, arXiv

Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions
» Kogkalidis, MM & Moot, 2020

Neural Proof Nets. CoNLL url

Code: https://github.com/konstantinosKokos/spindle
Online demo: https://parseport.hum.uu.nl/spindle

https://dspace.library.uu.nl/handle/1874/427996
https://doi.org/10.48550/arXiv.2203.12235
https://aclanthology.org/2020.conll-1.3/
https://github.com/konstantinosKokos/spindle
https://parseport.hum.uu.nl/spindle

Challenges

Recall we write L(G, B) for the strings of type B recognized by grammar G.
wi -+ - wy, € L(G, B) if the following hold:

- (wi, A;) € Lex for 1 <4 < m;

- T'ia,,..,a,) F B, for I' an antecedent structure with yield Ay,..., A,

» type ambiguity: what is the right type for w; given its context?
~ supertagging
» structural ambiguity: what is the proper structure for I' to derive B

~» parsing: neural proof nets

Integrating supertagging and neural parsing

Neural proof nets The parsing method uses LL proof nets. Proof net construction
can be seen as a staged process:

» proof frame: forest of formula decomposition trees — supertagging ©
» proof structure: p frame plus pairwise linking of in/out atoms
» proof net: p structure with successful traversal

MILL?;D lambda term as byproduct of traversal

Key neural methods

> supertagging: parallel tree decoding with dynamic graph convolutions

» axiom linking: Sinkhorn iterative method to approach double stochastic matrix

» verification: Lamarche traversal method Lamarche 2008

Grishin, polarities, continuations

Some background refs in addition to the abstract bibliography

» Curien & Herbelin, The duality of computation, ICFP 2000
» Bernardi & MM, ESSLLI 2007 Course Notes:
http://symcg.pbworks.com/f/essllinotesnew.pdf

» Bastenhof, Polarized Montagovian Semantics for the Lambek-Grishin Calculus,
FG 2010; Categorial Symmetry, PhD thesis 2013

http://symcg.pbworks.com/f/essllinotesnew.pdf

Road map

On the left the LG source calculus in its various presentations; moving to the right the
target calculi obtained by compositional translations (homomorphisms).

LGa

LGs
n.f.

LGF [MILLg, ..
cH CcH

[()

Aver AmiLL, A,

Glossary

- LGa: categorical presentation with arrows f : A — B. Atomic types A =
{np, n, s}; connectives {®, /,\, D, D, S}.

- LGs: display sequent calculus. Equivalence LGa = LGs. LGs enjoys cut elimina-
tion. Corollary: decidability, subformula property.

- LGf: focalized LG. Elimination of spurious ambiguity: normal form derivations
through polarity restrictions.
Args: term language, Curry-Howard isomorphic to LGf proofs.

- MILLg .1: the target logic for derivational semantics. The set of atomic types is
AU{L}; connectives: multiplicative conjunction ®, restricted linear implication

- —o_ w.r.t. response type L. [-] translates normal LGf sequent proofs to normal
MILL natural deduction proofs.

AMILL® . linear lambda calculus in Curry-Howard correspondence with MILLg, ...

- AL, _,: target term language for lexical semantics. Substitution of (possibly non-
linear) translations for lexical constants in the linear derivational MILL terms.

Lambek-Grishin calculus: categorical presentation

A, B == p]| atoms: s, np, ...
A® B|B\A| A/B | product, left vs right division
A®B|A0OB|BOA sum, right vs left difference

Identity, composition of arrows

Residuation laws
f:A® B —C f:A®B —C
>f:A— C/B af: B— A\C

g:A—C/B g: B— A\C
> lg:A® B—C alg:A® B—C

Dual residuation laws
f:C—BaA f:C—BaA
4f:BoC — A »f:CoA—B

g:BoC— A g:CoA—B

4 lg:C—BapA »lg:C—BpA

Monotonicity laws

fiA—A g.B—B f:A—A g:B—B f:A—A g:B—DB

flg:A/B"— A'/B fRg:A®B — A ®B g\f: B\A — B\A’

Dual monotonicity laws

f:tA—A ¢g.B—B f:A—A g:B—B f:A—A g:B—DB

fog:AoB — A OB f®g:ApB— A B gOf:BBOA—BQA
Linear distributivity laws (type IV, type I: invert the arrow)
d:(AOB)RC — A (B®(C) b:C(BQA) —(CRB)0A
q:CR(ASOB) — A (C® B) p: (BOARC —(BRIC)DA
Linear distributivity laws (rule form)

f:A®B—C®D fiA®B—C®D
df:CoA— D/B bf:BoD— A\C

f:A®B —C®D f:A®B —C&®D
qf:CS B — A\D pf:AoD—C/B

Exercise

For each distributivity law, Grishin gives six interderivable forms.

(a) (b\¢)@a — b\(c@a) (d) (a\¢)Ob—cQ(a®b)
(b) b\(cda) — (b\c)Ba (e) (adb)/c— a/(cOb)
(¢) a®(cob) — (a®c)@b (f) a2 (bSc)— (c/a)\b

Prove (a)—(f), and give their combinator name.

Kripke relational interpretation MM & Kurtonina 2010

v(A® B) = {z|3Jyz.Rgryz Ay € v(A) Az € v(B)}
v(C/B) = {y|Vzz.(Rgzyz Az € v(B))=zecv(C)}
v(A\C) = {z|Vay.(Rgzyz Ay € v(A)) =z €cv(C)}
v(A®@B = {z]|VYyz.Rezyz= (y€v(A)Vzecv(B))}
v(CoB) = {y|3zz.RezxyzAzgv(B)ANz e v

)}
v(ASC) = {z|3Jzy.Rezyz Ay & v(A) ANz cv(C)}

LGs: display sequent calculus
Display sequent calculus:

» connective left and a right intro rule, cf regular Gentzen sequent calculus
» structural proxy for each of the connectives, not just for ® and ®.

We use the same symbol for the logical connective and its structural counterpart,
using centerdots to set off the structural version.

» LGs enjoys cut elimination, but suffers from spurious ambiguity

Coming soon: a focalized version; source calculus for compositional, continuation-
based interpretation

Sequents of the form Z - O, where Z is an input structure, O an output structure.
Structures are built out of formulas F by means of the grammar below.

T
@

FIZ-®I|Z-0-0]0-0-1)
FlO-®-0|T\-0|0./ I

In the rules below, A, B, ... are formula variables, X, Y, ... structure variables.

Structural rules The (dual) residuation laws of the categorical presentation here take
the form of structural rules. They guarantee that any formula component of a structure
can be displayed on its own, left or right of the turnstile. Grishin's distributivity
principles, similarly, are expressed at the structural level.

XFA ALY
AF A X XFy cut
X+Z7./Y Y. .0 ZFX

Eo——————— 8 —_—
Xovrz? Zivo. xdr

r
vrx\2z 7 Zoxryd?
X ©Y-Z-6-W X®YrtZ.8W .,
Z 0 XFW-/-Y Y- 0 WFX-\-Z
X ®YrZ.9W X©Y-zo W
Z 0 YFX-\-W X0 WFZ-/-Y

Logical rules Each logical connective has a rewrite rule which replaces the logical
operation by its structural proxy. In the presence of Cut, the rewrite rules are invertible.

A-$-BFY X+A-#-B
ASBFY XFA#B

In the remaining rules, ($R) for 3§ € {®,0,@} and (#L) for # € {®,/,\}, we
recognize the monotonicity principles.

$L $€{®,0,0} #R #e€{0,/,\}

XFA YFB AFX BFY
X o vrdeB °® AeBrx.o.v oL
X+A BFY XFA BFY

L
ABrxAv Y X o vraos©F
X-A BRY , _XEA BEY p

B/AvFY -/ X Y O XFBOA

Cut elimination The rules satisfy Belnap’s (JPL, 1982) conditions for cut-elimination.

LGf: focused sequent calculus
Three types of sequent: neutral X Y, right focused X F and left focused FY.

» neutral sequents: display rules, distributivity rules and invertible rewrite rules
operate on neutral sequents.

» applicability of the remaining rules is constrained by the polarity of the formulas
in focus.
> formulas with invertible left introduction rule are positive (®,S, @);
> formulas with invertible right introduction rule are negative (®,/,\).

> atomic formulas are assigned an arbitrary polarity bias.

Axiom, Co-axiom
negative.

— A
AF[A] T

[Al- A

In the (Ax) case, A has to be positive; in the (CoAx) case A is

CoAx

Focusing, Defocusing The rules in the left column have A negative; for those in the

right column, A has to be positive.

AlFY
ALY

XH[A] |
A

l_

<

b
T
~!

=]
=
~

Monotonicity rules The non-invertible rules transfer the focus from a complex for-
mula to its subformulae.

X +[A] Y +I[B] oR AlF X [BlFY ol
X ® YrA®B| ABBIFX-6-Y
X +[A] D—Y\L X +[A] [BlFY oR
A\B|F X -\-Y X-0-Y+[AQB|
X +[A] D—Y/L X +[A] [BJFY oR
B/AlFY /- X Y- -©-X+BoA|

Exercise Below a derivation for ‘Alice thinks everybody left’, where ‘everybody’ is
typed s/(np\s). With the atom bias discussed in class (s negative, other atoms posi-
tive), there is only one derivation obeying the polarity restrictions. Fom the backward
chaining perspective (conclusion to axioms), this derivation first activates the type for
‘thinks' (np\s)/s; activation of the type for ‘everybody’ s/(np\s) is delayed to the
point where the embedded sentence ‘everybody left’ is derived.

Try the opposite order of activation (s/(np\s) before (np\s)/s), and show where/why
the derivation crashes.

(You can silently perform a sequence of residuation inferences, started and ended with
(de)focusing, for example = below.)

FY
FY (residuation steps)

X+ - abbreviates X+

npl— [s]F s L)

I—np~\~s B

np\sknp-\-s
np\s F np\s (\R)

5]k s np\sl— _(,/L)

s/(np\s)|F s - /- (np\s)
s/(np\s) 5 -/ (np\s)
e me] 817\) (s/(np\s) @ (np\s) Fs
np\s|Fnp -\ s G/w\) & (P FE]
F(np - \-s) -/ ((s/(np\s) - ® - (np\s))
(np\)/5 ¥ (np -\ 5) -/ ((s/(np\)) - @ - (np\s))
((\s)/5) - @ - ((s/(np\s)) - ® - (np\s)) Fp -\ s
- @ (((np\s)/5) - @ - ((s/(np\s)) - ® - (np\s))) s
np- @ (((np\s)/5) - @ ((s/(np\s)) - @ - (np\5))) -

A

Solution The attempt below displays the s/(np\s) formula, brings it in focus and
tries to decompose it by means of (/L). In order to proceed, the left premise with
focused would have to be turned into a neutral sequent by (=). But this rule
requires a positive formula, and s has negative bias.

4
S (npNe)/5) N (mp N\ s) " mp\s [npvs)
s/(np\s)|F (((np\s)/s) - \ - <np \-s8))- /- <np\s>
s/(np\s) F ((np\s)/s) -\ - (np -\ -8)) - /- (np\s)
(s/(np\s)) - ® - (np\s) - ((np\s)/s) -\ - (np -\ - 5)
((np\s)/s) - ® - ((s/(np\s)) - @ - (np\s)) Fnp - \ - s
np-@ - ((np\s)/s) - ® - ((s/(np\s)) - @ - (np\s))) F s

/L)

LGf: proofs and terms

Argr: term language in Curry-Howard (i.e. 1-to-1) correspondence with LGf proofs.

AyLgs has three types of terms, corresponding to the three types of sequents: values for
sequents with focus right; evaluation contexts for sequents with focus left; commands

for neutral sequents.

The grammar of raw terms is given below.
viu=pa.C |V 5 Vi=z|viQu|lvde|leQu
ex=px.C|E ; Eu:=aleitPe|v\e]|e/v

1E)[(V o)
Ba

cu={x
Cu=c|Zto| 20| Bro|fo|2fo|2te

z

Typing rules LGf inference rules as typing rules for the raw term language.

CoAx

- A P —
v Ab . oA
In the (—), (=) rules, u, @ are binding the (co)variables «, x.

EiAlry | Xr[ViA]

z: A Y X F a:A
(z1E) (Vi)

c c
XFa:A z: AFY

XrlpoC: 4] @O Ay

Typing rules (cont’d) Rewrite rules take a structure consisting of two labelled formu-
las in the premise and replace it by a labelled formula in the conclusion. Below the rules
for (® L) and (@L). For the other rewrite rules, apply the (-)* and (-)T symmetries.

C C
z: A ®-y:BFX z:A-©-8:BFX
2 A®B F X © 2A0B F X
e B

Non-invertible monotonicity rules simply use the connective symbols in the term lan-
guage to record the logical rule applied. Add the (-)? and (-)' symmetric cases.

e:BlrY [eiAlbX By Xrlia
le1@®ex: BOAFY @ X le/v:B/A|FY -/ X

The structural rules (display rules, distributivity rules) leave no trace in the term as
they do not affect the interpretation.

/L

Compositional interpretation: from LGf to MILL .

Lef ML,
CH CH
Avcr [Amiir,

The map [-] sends LGf sequent derivations/terms to Natural Deduction proofs/terms
in MILLg ...

» MILLg ..: the fragment of Multiplicative Intuitionistic Logic with linear products
and restricted implications A —o L

» atom _L: response type; A —oL abbreviates as A'.

Interpretation: types By taking into account the polarities, the interpretation of
types avoids the ‘bureaucratic redexes’ we saw in the Plotkin/Barker translations. For
positive atoms [p] = p; for atoms with negative bias [p] = p~. Complex types:

positive

negative

A B| [A®B] [AQ B] [BO Al
- — | A" [BlY | [Al*®[B] | [Bl®[A]"
- +| [A1*®[B] | [A]"®[B]*+ | [B]* ® [A]*
+ —| [Al1®[B]* | [Al®[B] [B] ® [A]
+ +| [Al®[B] | [AI®[B]" | [B]*®[A]
A B [A/B] [B\A] [A® B]

- —| [Ale[B]* | [B]*®[A] [A]l ® [B]
- +| [A1®[B] [B1®[A] | [A]®[B]*
+ — | TAF®[B]* | [B]* ®[A]* | [A]*®[B]
+ +| A" e [B] | [B1®[Al" | [A]*®[B]*

Interpretation: proofs/terms The monotonicity rules uniformly translate as linear
pairs, with the translation of the rewrite rules as the matching case construct. Ap-
plication/abstraction at the MILL target end arise as the image of the (de)focusing
rules.

(co)var: [2] =% ; [a] =a
linear application: [(z1 E)]=&[E]) ; [{(VIa)]=(@][V]
linear abstraction: [pz.Cl = Xz.[C] [na.Cl = Aa.[C

linear pair: [‘b#w—l = <|—¢—|7 WU (# € {®’ /7 \7 D, 0, ®})
case: [£2£.C1 = case £ of (¢,1).[C]

In order to extend [-] to sequents, add negation for the type of negative hypotheses
and positive conclusions.

Al [z: A] [a: A]
+| z:[A] a:[A)t
—|Z: AL @:[A]

Effect of the translation Normal (i.e. cut free) LGf sequent proofs are mapped to
normal (i.e. redex free) MILLg .. N.D. proofs:

source: LGf sequent proofs ~» target: MILLg .. N.D. proofs

XEy ~ [X1,[Y1F[C] L
X+lv: Al ~ [XTF [v]:[A] (A:+)
~ [XTF[v]:TA]S (A:-)

le: AlFY

¢

[YTF el : [A] (A:-)
~ [YTE[e] : TA]: (A:4)

Example We compute the interpretation of (1) (negative bias for s, positive for np, n)

(1) ((some: (np/n) - -teacher : n) - ® - left : (np\s)) -

y o
np Fs (L)
(p\o)|F (np -\ 5)
(np\s) - (np -\ - s)
(np-® - (np\s)) s
npt (s-/-(np\s)) _ [teacher]
[np]F (s /- (np\s)) n"(/L)
(np/n)[F ((s-/-(np\s))-/-n)
(np/n) F ((s- /- (np\s)) -/ -n)
((np/n)-®-n)F (s-/-(np\s))
(((np/n) - ®-mn) -®- (np\s)) Fs
(((np/n) - @ -n)-®- (np\s)) -

[f] = Aa.([some] 2 (Ay.([left] [rp\sT* (y"p,asL)), [teacher]™)) L

Lexical semantics: from MILL to IL

[] ()

Avcr AmiLL, A,

For [-] the interpretation of lexical constants is a ‘black box'.
The (-)* map unpacks the lexical constants.
» constants are assigned a A term of type ([-](+))*

» the -¢ translation is an IL term: non-linear recipes are allowed

Types Target atoms e (entities), ¢t (booleans). Response type interpreted as ¢
npl=e ; nl=e—ot ; s'=L'=t¢t
Complex types: replace linear by corresponding IL operations:

(A@B)'=A"xB" ; (A—B)'=A"> B

Lexical sample Some lexical entries given bias s : —, np,n : +.

You can convince yourself that the given terms are welltyped as {-}*.

SOURCE TYPE CONSTANT

{}

np\s left
(np\s)/np likes
(np/n) @n everyone
np/n some

n girl
(np\s)/s thinks

s/(np\s) everybody

Mz, c).(c (LEFT®))

A{z, c),y).(c (LIKE®! y x))

Mz, y).(V Xz.(= (y 2) (z 2))), PERSON')
Mz, y).(3 Az.(A(y 2) (z 2)))

GIRL

M(z,c), q).(c (THINK(*)Det ¢ 1))

A, v).(c (Y Az.(v (z,id))))

Notation: {-} is [-] for positive types, [-]* for negatives.

Mz, y).M is A\z.M[z/moz,y/m12] (7o, m first/second projection of pair term);

id: identity function A\pf.p.

Scope construal

» local construal: 2 interpretations for “every student likes some teacher”

Aa.([every]| (Ay.([some] (Az.([likes| {{y, &), z)), [teacher])), [student]))
Aa. (Y Az.((= (STUDENT 2)) (3 Ay.((A (TEACHER ¥)) (o ((LIKES y) 2))))))

)
Aa.([some] (Ay.([every] (Az.([likes] {{z,a),y)), [student])), [teacher]))
Aa.(3 Az.((A (TEACHER z)) (V Ay.((= (STUDENT y)) (e ((LIKES 2) ¥))))))

» non-local construal: 2 interpretations for “Alice thinks some student left”

[thinks] (([alice], @), AB.([some] (Az.([left] (z, B)), [student]))
a ((THINKS AB.(3 Az.((A (STUDENT z)) (8 (LEFT x))))) ALICE

)
)
[some| (Ay.([thinks] ((Talice],), Ay.([left] (y,7)))), [student]))
3 Az.((A (STUDENT 2)) (o ((THINKS A7y.(vy (LEFT 2))) ALICE))))

Aa.)
Aa.)
Aa.
Ao

o~ o~ o~ o~

polarity bias s : —, np,n : +

Summarizing
Focusing regime + attendant continuation semantics optimizes syn/sem interface:

» © determiners are uniformly typed as np/n; desired sem type (et)(et)t results
from CPS translation

» @ compare: syntactic complications (s/(np\s))/n etc motivated by purely se-
mantic considerations; ad hoc extra typings or structural rules

To do How to delimit non-local construal?
» “Alice thinks some student left” has a 3 > THINKS interpretation; “Alice thinks
every student left” only THINKS > V

» imposing locality by means of {, 0 (cf Part 1) won't do: the unary modalities
are transparant for residuation inferences

More To Do ...

The scope construal case study is couched entirely within the NL fragment of LG.

Are there convincing uses of the Grishin connectives/linear distributivities in linguistics?

» Moot (2008) uses LG to simulate the adjunction operation of TAG, a key example
of a mildly context-sensitive formalism; but

» Melissen (2009): LG has recognizing capacity beyond MCS

» apart from these formal grammar studies, are there actual NLP uses?

