Algebraic semantics for interpretability logics

Teo Šestak

University of Zagreb teo.sestak@fsb.unizg.hr

Logic and Applications 2025

Table of Contents

- Introduction
- 2 Logic IL
- Veltman Semantics
- 4 Algebraic semantics
- Soundness and Completeness
- **6** Concluding remarks

Table of Contents

Introduction

•00

- Introduction
- 2 Logic IL
- Veltman Semantic
- 4 Algebraic semantics
- Soundness and Completeness
- 6 Concluding remarks

Introduction

Introduction

Algebraic semantics (for normal modal logics):

- boolean algebras with additional operators.
- robustly complete.

Interpretability logics:

- extension of provability logic GL.
- interpreted on Kripke-like frames called Veltman frames.

Goals of this talk:

- define algebras for interpretability logics.
- check the similarity between the properties of algebras for modal and interpretability logics.

Introduction

Boolean algebras with operators

- boolean algebra with operators (BAO): a boolean algebra together with an operator f_{\square} (or f_{\lozenge}), satisfying some conditions,
- every Kripke frame is a BAO.
- modal logic K is sound and complete with respect to the class of all BAOs.
- every normal modal logic is sound and complete with respect to some class of BAOs

- 1 Introduction
- 2 Logic IL
- Weltman Semantic
- 4 Algebraic semantics
- Soundness and Completeness
- 6 Concluding remarks

Logic IL

Alphabet of logic **IL** is the union of the following sets:

- a countable set $Prop = \{p_0, p_1, p_2, \dots\}$, of propositional variables,
- a set $\{\bot\}$,
- ullet a set $\{
 ightarrow\}$,
- \bullet a set $\{\rhd\}$ and
- a set {(,)}.

A formula of **IL** is given by the following:

$$\varphi ::= p \mid \bot \mid \varphi \to \varphi \mid \varphi \rhd \varphi,$$

where $p \in \mathsf{Prop}$.

Other symbols

We define \neg , \wedge , \vee , \leftrightarrow , \top , \square i \Diamond as follows:

- $\bullet \ \neg \varphi := \varphi \to \bot,$
- $\bullet \ \varphi \wedge \psi := \neg (\varphi \to \neg \psi),$
- $\bullet \ \varphi \vee \psi := \neg \varphi \to \psi,$
- $\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi),$
- \bullet $\top := \neg \bot$,
- ullet $\Box \varphi := (\neg \varphi) \rhd \bot$ and
- $\bullet \ \Diamond \varphi := \neg \Box \neg \varphi.$

System IL contains all propositional tautologies and all instantiations of the following:

Algebraic semantics

- $\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi).$
- L2 $\Box \varphi \rightarrow \Box \Box \varphi$,
 - $\Box(\Box\varphi\to\varphi)\to\Box\varphi.$ L3
 - J1 $\Box(\varphi \to \psi) \to (\varphi \rhd \psi).$
 - J2 $((\varphi \rhd \psi) \land (\psi \rhd \chi)) \rightarrow (\varphi \rhd \chi)$.
- $((\varphi \triangleright \chi) \land (\psi \triangleright \chi)) \rightarrow ((\varphi \lor \psi) \triangleright \chi).$ J3
- J4 $(\varphi \rhd \psi) \to (\Diamond \varphi \to \Diamond \psi).$
 - $(\Diamond \varphi \rhd \varphi).$

Rules of inference are:

- modus ponens: from $\varphi \to \psi$ and φ derive ψ ,
- necessitation: from φ derive $\square \varphi$.

A *proof* of a formula φ in **IL** is a finite sequence of formulae such that φ is the final formula in the sequence and every formula in the sequence is

- a tautology,
- and instantiation of an axiom schema of IL,
- derived by a rule of inference from some of the previous formulas.

If there exists a proof of φ , we refer to φ as *provable* in **IL** or a *theorem* of **IL** and denote it as $\vdash \varphi$.

Derivation

A derivation of a formula φ from a set Γ in **IL** is a finite sequence of formulae such that φ is the final formula in the sequence and every formula in the sequence is

- theorem of IL,
- an element of Γ,
- derived by modus ponens from some of the previous formulas.

If such a derivation exists, we refer to φ as derivable from Γ in **IL** and denote it as $\Gamma \vdash_{\mathbf{IL}} \varphi$.

Table of Contents

- Introduction
- 2 Logic IL
- Veltman Semantics
- 4 Algebraic semantics
- 5 Soundness and Completeness
- 6 Concluding remarks

Veltman Semantics

Definition

A Veltman frame \mathfrak{F} is a triple $(W, R, \{S_w : w \in W\})$, where W is a non-empty set, R transitive and conversely well-founded binary relation on W and $\{S_w : w \in W\}$ a collection of binary relations on R[w], where, for all $w \in W$, S_w is a reflexive and transitive and the restriction of R onto R[w] is contained in S_w .

Definition

A Veltman model is a pair $\mathfrak{M}=(\mathfrak{F},V)$, where \mathfrak{F} is a Veltman frame and $V: \mathsf{Prop} \to \mathcal{P}(W)$ is a valuation function.

Veltman Semantics

Valuation indeces a *forcing* relation \Vdash , in the following way:

$$\begin{array}{lll} w \Vdash \rho & \iff w \in V(\rho), \\ w \Vdash \bot & \text{for no } w \in W, \\ w \Vdash \varphi \to \psi & \iff w \nvDash \varphi \text{ or } w \Vdash \psi, \\ w \Vdash \Box \varphi & \iff \forall v (wRv \Rightarrow v \Vdash \varphi), \\ w \Vdash \varphi \rhd \psi & \iff \forall u (wRu \& u \Vdash \varphi \Rightarrow \exists v (uS_w v \& v \Vdash \psi)). \end{array}$$

We also write $\mathfrak{M}, w \Vdash \varphi$, if we want to specify the model \mathfrak{M} . If for all $w \in W$ in a model \mathfrak{M} , $w \Vdash \varphi$ holds, we write $\mathfrak{M} \Vdash \varphi$.

Forcing relation extends the valuation function to a set of all formulae:

$$V(\varphi) = \{ w \in W : w \Vdash \varphi \}.$$

Completeness

- F. Veltman, D. de Jongh. *Provability Logics for Relative Interpretability*, Mathematical Logic, Springer, Boston, MA, 1990.
- G. Japaridze, D. de Jongh. *The Logic of Provability*, Handbook of Proof Theory, Elsevier, Amsterdam, 1998.

Theorem (Weak completeness)

If $\not\vdash_{\mathsf{IL}} \varphi$, then there exists a finite Veltman model \mathfrak{M} such that $\mathfrak{M} \not\Vdash \varphi$.

Incompleteness of extensions

E. Goris, J.J. Joosten. A new principle in the interpretability logic of all reasonable arithmetical theories, Logic Journal of the IGPL 19, 2011.

Completeness theorem, however, does not hold for extensions of IL. Consider systems ILP_0 and ILR obtained by adding one of the following to our system:

$$P_0 \qquad (\varphi \rhd \Diamond \psi) \to \Box (\varphi \rhd \psi),$$

$$\mathsf{R} \qquad (\varphi \rhd \psi) \to \neg(\varphi \rhd \neg \chi) \rhd (\psi \rhd \Box \chi).$$

It can be shown that P_0 and R define the same class of frames, but $\not\vdash_{ILP_0} R$, which means that system ILP_0 is incomplete with respect to Veltman semantics.

Table of Contents

- 1 Introduction
- 2 Logic IL
- Veltman Semantics
- 4 Algebraic semantics
- 5 Soundness and Completeness
- 6 Concluding remarks

Interpretability algebras

Definition

An interpretability algebra is a tuple $\mathfrak{A}=(A,+,-,0,f_{\triangleright})$, where (A,+,-,0) is a boolean algebra and $f_{\triangleright}:A\times A\to A$ is an operator satisfying the following (where we use abbreviations $f_{\square}(x):=f_{\triangleright}(-x,0)$ and $f_{\lozenge}(x):=-f_{\square}(-x)$):

Algebras from frames

Let $\mathfrak{F} = (W, R, \{S_w : w \in W\})$ be a Veltman frame. Then the structure

$$\mathfrak{F}^+:=(\mathcal{P}(W),\cup,^c,\emptyset,m_{\triangleright}),$$

where

$$m_{\triangleright}(X,Y) = \{w \in W : \forall u \in X \ (wRu \rightarrow \exists v \in Y \ (uS_w v))\},$$

is an interpretability algebra, which we refer to as the *complex interpretability algebra* of \mathfrak{F} . This means that interpretability algebras are a generalization of Veltman frames.

What about the interpretation of formulae?

Algebraic models

Definition

Let $\mathfrak{A}=(A,+,-,0,f_{\triangleright})$ be an interpretability algebra. An *assignment* is a function $\theta:\mathsf{Prop}\to A$.

We can extend an assignment function to the set of all formulae in the following way:

$$egin{aligned} heta(ot) &= 0, \ heta(arphi
ightarrow \psi) &= - heta(arphi) + heta(\psi), \ heta(arphi
ho \psi) &= f_{
ho}(heta(arphi), heta(\psi)). \end{aligned}$$

When $\mathfrak A$ is a complex interpretability algebra of a frame, the assignment is nothing more than a valuation. Hence, interpretability algebras with assignments are a generalization of Veltman models.

Algebraic models

Definition

Let φ and ψ be some formulae. We refer to an expression of the form $\varphi\approx\psi$ as an IL-equation.

We say that an **IL**-equation $\varphi \approx \psi$ is *true* in an interpretability algebra \mathfrak{A} , which we denote as $\mathfrak{A} \models \varphi \approx \psi$, if for every assignment θ we have $\theta(\varphi) = \theta(\psi)$.

For complex interpretability algebras, the following holds:

$$\begin{split} (\mathfrak{F},\theta), w \Vdash \varphi & \text{ if and only if } & w \in \theta(\varphi), \\ \mathfrak{F} \Vdash \varphi & \text{ if and only if } & \mathfrak{F}^+ \vDash \varphi \approx \top, \\ \mathfrak{F} \Vdash \varphi \leftrightarrow \psi & \text{ if and only if } & \mathfrak{F}^+ \vDash \varphi \approx \psi. \end{split}$$

Table of Contents

- 1 Introduction
- 2 Logic IL
- Weltman Semantic
- 4 Algebraic semantics
- Soundness and Completeness
- 6 Concluding remarks

Logic IL

Straightforward induction over the length of a derivation may be used to prove the soundness theorem, i.e.

Theorem (Soundness)

If φ is a theorem of **IL**, then $\varphi \approx \top$ is true on any interpretability algebra.

Additionally, we may use the completeness theorem for **IL** with respect to Veltman ssemantics to prove the completeness theorem, i.e.

Theorem (Completeness)

If for every interpretability algebra \mathfrak{A} we have $\mathfrak{A} \models \varphi \approx \top$, then $\vdash_{\mathsf{IL}} \varphi$.

Extensions of IL

If φ is a formula, we use φ^{\approx} to denote the equation $\varphi \approx \top$.

Given a set of formulae Σ , we use V_{Σ} to denote the class of all interpretability algebras in which the set $\{\varphi^{\approx}:\varphi\in\Sigma\}$ is true.

For an extension ${\bf IL}^+$ of ${\bf IL}$, we use $V_{{\bf IL}^+}$ to denote a class of interpretability algebras in which the set of all axioms of ${\bf IL}^+$ is true.

Extensions of IL

We define the relation $\equiv_{\textbf{IL}^+}$ between formulae in $\mathcal{L}_{\textbf{IL}}$ in the following way:

$$\varphi \equiv_{\mathsf{IL}^+} \psi \quad \text{if and only if} \quad \vdash_{\mathsf{IL}^+} \varphi \leftrightarrow \psi.$$

If $\varphi \equiv_{\mathbf{l}\mathbf{L}^+} \psi$, we say that φ and ψ are equivalent *modulo* $\mathbf{l}\mathbf{L}^+$.

Relation $\equiv_{\mathbf{IL}^+}$ is a congruence relation (an equivalence relation which is well behaved with respect to boolean connectives and operators).

Lindenbaum-Tarski **IL**⁺-algebra

Definition

Let \mathcal{L}_{IL} be the set of all formulae in the language of IL. The *Lindenbaum-Tarski* IL^+ -algebra is the structure

$$\mathfrak{L}_{\mathsf{IL}^+} = (\mathcal{L}_{\mathsf{IL}}/\equiv_{\mathsf{IL}^+}, +, -, 0, f_{\triangleright}),$$

where
$$[\varphi] + [\psi] := [\varphi \lor \psi]$$
, $-[\varphi] := [\neg \varphi]$, $0 := [\bot]$ and $f_{\triangleright}([\varphi], [\psi]) := [\varphi \rhd \psi]$.

Lindenbaum-Tarski ${\bf IL}^+$ -algebra is an interpretability algebra which belongs to the class $V_{{\bf IL}^+}$. Additionally, for all formulae φ ,

$$\vdash_{\mathbf{IL}^+} \varphi$$
 if and only if $\mathfrak{L}_{\mathbf{IL}^+} \vDash \varphi \approx \top$.

Completeness

Lindenbaum-Tarski \mathbf{IL}^+ -algebra falsifies all non-theorems of \mathbf{IL}^+ . Therefore, if we have a non-theorem of \mathbf{IL}^+ , we have found an algebra belonging to the class $V_{\mathbf{IL}^+}$ which falsifies it. Hence, we have the following theorem:

Theorem (Completeness for extensions)

Let IL^+ be an extension of IL. Then IL^+ is sound and complete with respect to V_{IL^+} , i.e.,

$$\vdash_{\mathbf{H}^+} \varphi$$
 if and only if $V_{\mathbf{H}^+} \models \varphi^{\approx}$.

Table of Contents

- Introduction
- 2 Logic IL
- Weltman Semantic
- 4 Algebraic semantics
- 5 Soundness and Completeness
- **6** Concluding remarks

Properties of interpretability algebras

- ullet a boolean algebra together with an operator f_{ullet} , satisfying some conditions,
- every Veltman frame is an interpretability algebra,
- interpretability logic IL is sound and complete with respect to the class of all interpretability algebras,
- every extension of IL is sound and complete with respect to some class of interpretability algebras.

Concluding remarks

This result

- improves upon Veltman semantics, in a natural way analogous to modal logic,
- proves completeness of extensions in a modular way,
- generalizes the notion of BAO to interpretability logics.

Concluding remarks

Future work:

- general frame semantics,
- duality theory.

Concluding remarks

Thank you for your attention!

Bibliography

- Blackburn P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge University Press (2001)
- Goris, E., Joosten, J.J.: A new principle in the interpretability logic of all reasonable arithmetical theories, Logic Journal of the IGPL 19, 1–17 (2011)
- Goris E., Joosten J.J.: Modal matters in interpretability logics, Logic Journal of the IGPL 16, 371–412 (2008)
- Šestak, T.: Algebraic semantics for interpretability logics. In: V. Gradimondo, E.E. Rosina (eds.): Preliminary Proceedings of the ESSLLI 2025 Student Session, pp. 2–11. (2025)
- Veltman, F., de Jongh, D.: Provability logics for relative interpretability. In: P.P. Petkov (ed.), Mathematical Logic, Proceedings of the 1988 Heyting Conference, pp. 31–42. Plenum Press, (1990)

Bibliography

- Visser, A.: An overview of interpretability logic. In: M. Kracht et al. (eds.), Advances in Modal Logic, Vol. 1, pp. 307–359. CSLI Publications (1998)
- Visser, A.: Interpretability logic. In: P.P. Petkov (ed.), Mathematical Logic, Proceedings of the 1988 Heyting Conference, pp. 175–210. Plenum Press (1990)
- Visser, A., Preliminary Notes on Interpretability Logic, Logic Group Preprint Series nr. 29, Department of Philosophy, University of Utrecht (1988)