Introduction
000

Logic IL Veltman Semantics Algebraic semantics Soundness and Completeness Concluding remarks
000000 00000 00000 000000 0000000

Algebraic semantics for interpretability logics

Teo Sestak

University of Zagreb
teo.sestak@fsb.unizg.hr

Logic and Applications 2025

HrzZz

Croatian Science
Foundation




Table of Contents

@ Introduction

© Logic IL

© Veltman Semantics

@ Algebraic semantics

© Soundness and Completeness

@ Concluding remarks



Introduction Logic IL Veltman Semantics Algebraic semantics Soundness and Completeness Concluding remarks
@00 000000 00000 00000 000000 0000000

Table of Contents

@ Introduction



Introduction
oeo

Introduction

Algebraic semantics (for normal modal logics):

@ boolean algebras with additional operators,

@ robustly complete.
Interpretability logics:

@ extension of provability logic GL,

@ interpreted on Kripke-like frames called Veltman frames.
Goals of this talk:

o define algebras for interpretability logics,

@ check the similarity between the properties of algebras for modal and
interpretability logics.
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Boolean algebras with operators

@ boolean algebra with operators (BAO): a boolean algebra together with an
operator f (or f;), satisfying some conditions,

@ every Kripke frame is a BAO,
@ modal logic K is sound and complete with respect to the class of all BAOs,

@ every normal modal logic is sound and complete with respect to some class of
BAO:s.
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Logic IL

Alphabet of logic IL is the union of the following sets:
@ a countable set Prop = {po, p1, p2, ... }, of propositional variables,
@ aset {Ll}
@ aset {—},
@ aset {>} and

aset {(,)}

A formula of IL is given by the following:

pu=plLlle—=plp>y,

where p € Prop.
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Other symbols

We define -, A, V, <>, T, O i ¢ as follows:
o~y =p— 1,
° Y At i=(p = ),
eV i=-p =19,
p o= (= Y)A (=)
T:=-1,
O¢ :=(—¢) > L and

O = —0—.
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System IL

System IL contains all propositional tautologies and all instantiations of the following:
L1 O(p = ¢) = (Op — Oy),
L2 Oe — 00y,
L3 OO¢ — ¢) — Oy,
JI Ol =) = (e > 9),

220 ((p)A (> X)) = (¢ > X)

B ((pex)AN@>xX) = ((pVY)>x),
Ja (e ) = (Op = 09),

B (O o).

Rules of inference are:
@ modus ponens: from ¢ — 1 and ¢ derive 1),

@ necessitation: from ¢ derive .
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Proof

A proof of a formula ¢ in IL is a finite sequence of formulae such that ¢ is the final
formula in the sequence and every formula in the sequence is

@ a tautology,
@ and instantiation of an axiom schema of IL,
@ derived by a rule of inference from some of the previous formulas.

If there exists a proof of , we refer to ¢ as provable in IL or a theorem of IL and
denote it as - .
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Derivation

A derivation of a formula ¢ from a set [ in IL is a finite sequence of formulae such
that ¢ is the final formula in the sequence and every formula in the sequence is

@ theorem of IL,
@ an element of T,
@ derived by modus ponens from some of the previous formulas.

If such a derivation exists, we refer to ¢ as derivable from I in IL and denote it as
I |—||_ .
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Veltman Semantics

Definition

A Veltman frame § is a triple (W, R, {S, : w € W}), where W is a non-empty set, R
transitive and conversely well-founded binary relation on W and {S,, : w € W} a
collection of binary relations on R[w], where, for all w € W, S,, is a reflexive and
transitive and the restriction of R onto R[w] is contained in S,,.

A

Definition

A Veltman model is a pair MM = (F, V), where § is a Veltman frame and
V : Prop — P(W) is a valuation function.

.
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Veltman Semantics

Valuation indeces a forcing relation I, in the following way:

wlkp — w € V(p),

wlF L fornow € W,

wliFp—=>1v <<= wlFyporwl 1,

w I O < Vv(wRv = v I ),

wiFp>y <= VYu(WwRu& ulke= 3v(uSyv & vIF1))).

We also write 9, w I ¢, if we want to specify the model 901. If for all w € W in a
model M, w IF ¢ holds, we write M I+ .
Forcing relation extends the valuation function to a set of all formulae:

V(p)={we W:wl-p}.
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Completeness

[@ F. Veltman, D. de Jongh. Provability Logics for Relative Interpretability,
Mathematical Logic, Springer, Boston, MA, 1990.

[§ G. Japaridze, D. de Jongh. The Logic of Provability, Handbook of Proof Theory,
Elsevier, Amsterdam, 1998.

Theorem (Weak completeness)
If 1L ¢, then there exists a finite Veltman model 9t such that 90t ¥ .
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Incompleteness of extensions

[§ E. Goris, J.J. Joosten. A new principle in the interpretability logic of all reasonable
arithmetical theories, Logic Journal of the IGPL 19, 2011.

Completeness theorem, however, does not hold for extensions of IL. Consider systems
ILPy and ILR obtained by adding one of the following to our system:

Po (9> 0¢) = D(p > ),

R (¢>9) = ~(e>—x) > (¥ >Dx).
It can be shown that Pg and R define the same class of frames, but ¥ p, R, which
means that system ILPg is incomplete with respect to Veltman semantics.
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Interpretability algebras

Definition
An interpretability algebra is a tuple 2 = (A, +,—,0, f.), where (A,+,—,0) is a
boolean algebra and f. : A X A — A is an operator satisfying the following (where we
use abbreviations f5(x) := f..(—x,0) and fy(x) := —f5(—x)):
Q@ f(0)=0,
Q@ f(—f(x) + x) = fa(x),
Q f(x,z) f(y,z) =fu(x+y,2),
Q —f(—x+y)+filxy)=1
Q@ —f(xy)+(~f(y,2) +f(x,2) =1,
o
(7]

—f(x,y) + fa(—x) + oy =1,
o (fo(x), x) = 1.
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Algebras from frames

Let § = (W,R,{Sw : w € W}) be a Veltman frame. Then the structure
SJF = (P( W)a U7C 5 (Dv ml>)a

where
me(X,Y)={we W:Vue X (wWRu— 3veY (uS,v))},

is an interpretability algebra, which we refer to as the complex interpretability algebra
of §. This means that interpretability algebras are a generalization of Veltman frames.

What about the interpretation of formulae?
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Algebraic models

Definition

Let 2 = (A, +, —, 0, f.) be an interpretability algebra. An assignment is a function
0 : Prop — A.

We can extend an assignment function to the set of all formulae in the following way:

6(L) =0,
0(e — ¢) = —0(p) + 0(¢),
0(p > ) = £(6(¢), 0(1)).
When 2l is a complex interpretability algebra of a frame, the assignment is nothing

more than a valuation. Hence, interpretability algebras with assignments are a
generalization of Veltman models.
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Algebraic models

Definition

Let ¢ and ¥ be some formulae. We refer to an expression of the form ¢ ~ ¢ as an
IL-equation.

We say that an IL-equation ¢ & 1 is true in an interpretability algebra 2, which we
denote as A F ¢ ~ 1), if for every assignment 6 we have 6(¢) = 6(v).

For complex interpretability algebras, the following holds:
(§,0),wl- ¢ ifandonly if w e 6(p),
Sl-e ifandonlyif FTE@Ea~T,
Tl ifandonlyif FHE =1
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Logic IL

Straightforward induction over the length of a derivation may be used to prove the
soundness theorem, i.e.

Theorem (Soundness)

If ¢ is a theorem of IL, then ¢ &~ T is true on any interpretability algebra.

Additionally, we may use the completeness theorem for IL with respect to Veltman
ssemantics to prove the completeness theorem, i.e.

Theorem (Completeness)

If for every interpretability algebra 2l we have A F ¢ =~ T, then kL .
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Extensions of IL

If © is a formula, we use ™ to denote the equation p ~ T.

Given a set of formulae ¥, we use V5 to denote the class of all interpretability algebras
in which the set {¢™ : p € X} is true.

For an extension IL™ of IL, we use Vj + to denote a class of interpretability algebras in
which the set of all axioms of IL™ is true.
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Extensions of IL

We define the relation =, + between formulae in £y, in the following way:
p=+ ¢ ifandonlyif i+ ¢,
If o =+ ¥, we say that ¢ and v are equivalent modulo IL™.

Relation = + is a congruence relation (an equivalence relation which is well behaved
with respect to boolean connectives and operators).
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Lindenbaum-Tarski IL*-algebra

Definition
Let £y be the set of all formulae in the language of IL. The Lindenbaum- Tarski
IL™-algebra is the structure

£|L+ = (L"-/ =Lt s _707 fl>)a

where [p] + [¢)] := [p V ¥], —[¢] := [=¢], 0:= [L] and £.([], [¢1]) := [ > ¢].

Lindenbaum-Tarski IL*-algebra is an interpretability algebra which belongs to the class
ViL+- Additionally, for all formulae ¢,

Fiwt ¢ ifandonlyif £+ Fe~=T.



Soundness and Completeness
00000e

Completeness

Lindenbaum-Tarski IL+—a|gebra falsifies all non-theorems of IL™. Therefore, if we have
a non-theorem of IL*, we have found an algebra belonging to the class Vj + which
falsifies it. Hence, we have the following theorem:

Theorem (Completeness for extensions)

Let ILT be an extension of IL. Then IL™ is sound and complete with respect to Vj, +,
ie.,
Fu+ ¢ if and only if Wy + E ¢~
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Properties of interpretability algebras

o

a boolean algebra together with an operator f., satisfying some conditions,
every Veltman frame is an interpretability algebra,

interpretabiltiy logic IL is sound and complete with respect to the class of all
interpretability algebras,

every extension of IL is sound and complete with respect to some class of
interpretability algebras.



Concluding remarks
00®0000

Concluding remarks

This result
@ improves upon Veltman semantics, in a natural way analogous to modal logic,
@ proves completeness of extensions in a modular way,

@ generalizes the notion of BAO to interpretability logics.
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Concluding remarks

Future work:
@ general frame semantics,

o duality theory.
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Concluding remarks

Thank you for your attention!
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