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The Lambek Calculus

The Lambek calculus L comes from several sources in logic and
applications.

1. The logical basis for Lambek categorial grammars [Lambek
1958], supported by completeness w.r.t. models on formal
languages [Pentus 1995].

2. L is one of the substructural logics (see [Došen 1992; Restall
2000]): in the sequent form, it has the same logical rules as Int,
but lacks structural rules: weakening, contraction,
permutation.

3. As Int is the logic of Heyting lattices, the Lambek calculus
(extended with lattice-theoretic, so-called additive operations)
is the logic of a broader class—residuated lattices (see [Galatos,
Jipsen, Kowalski, Ono 2007]).



The Lambek Calculus

The Lambek calculus L comes from several sources in logic and
applications.

1. The logical basis for Lambek categorial grammars [Lambek
1958], supported by completeness w.r.t. models on formal
languages [Pentus 1995].

2. L is one of the substructural logics (see [Došen 1992; Restall
2000]): in the sequent form, it has the same logical rules as Int,
but lacks structural rules: weakening, contraction,
permutation.

3. As Int is the logic of Heyting lattices, the Lambek calculus
(extended with lattice-theoretic, so-called additive operations)
is the logic of a broader class—residuated lattices (see [Galatos,
Jipsen, Kowalski, Ono 2007]).



The Lambek Calculus

The Lambek calculus L comes from several sources in logic and
applications.

1. The logical basis for Lambek categorial grammars [Lambek
1958], supported by completeness w.r.t. models on formal
languages [Pentus 1995].

2. L is one of the substructural logics (see [Došen 1992; Restall
2000]): in the sequent form, it has the same logical rules as Int,
but lacks structural rules: weakening, contraction,
permutation.

3. As Int is the logic of Heyting lattices, the Lambek calculus
(extended with lattice-theoretic, so-called additive operations)
is the logic of a broader class—residuated lattices (see [Galatos,
Jipsen, Kowalski, Ono 2007]).



The Lambek Calculus

The Lambek calculus L comes from several sources in logic and
applications.

1. The logical basis for Lambek categorial grammars [Lambek
1958], supported by completeness w.r.t. models on formal
languages [Pentus 1995].

2. L is one of the substructural logics (see [Došen 1992; Restall
2000]): in the sequent form, it has the same logical rules as Int,
but lacks structural rules: weakening, contraction,
permutation.

3. As Int is the logic of Heyting lattices, the Lambek calculus
(extended with lattice-theoretic, so-called additive operations)
is the logic of a broader class—residuated lattices (see [Galatos,
Jipsen, Kowalski, Ono 2007]).



The Lambek Calculus

4. Another natural class of residuated lattices (besides algebras of
formal languages) are formed by algebras on binary relations;
see completeness results [Andréka, Mikulás 1994]. This
corresponds to interpreting Lambek formulae as actions (e.g.,
in a computational system). Extending the language with
Kleene star [Kleene 1956] yields action logic [Pratt 1991; Kozen
1994] and its infinitary version [Buszkowski, Palka 2007].

5. Finally, the Lambek calculus can be viewed as a version of
non-commutative intuitionistic linear logic [Girard 1987;
Abrusci 1990], with its informal resource interpretation. This
enables adding exponential and subexponential modalities
to the Lambek calculus.



The Lambek Calculus

4. Another natural class of residuated lattices (besides algebras of
formal languages) are formed by algebras on binary relations;
see completeness results [Andréka, Mikulás 1994]. This
corresponds to interpreting Lambek formulae as actions (e.g.,
in a computational system). Extending the language with
Kleene star [Kleene 1956] yields action logic [Pratt 1991; Kozen
1994] and its infinitary version [Buszkowski, Palka 2007].

5. Finally, the Lambek calculus can be viewed as a version of
non-commutative intuitionistic linear logic [Girard 1987;
Abrusci 1990], with its informal resource interpretation. This
enables adding exponential and subexponential modalities
to the Lambek calculus.



The Lambek Calculus

𝐴 → 𝐴 Id

Γ, 𝐴, 𝐵, Δ → 𝐶
Γ, 𝐴 ⋅ 𝐵, Δ → 𝐶 ⋅L Γ → 𝐴 Δ → 𝐵

Γ, Δ → 𝐴 ⋅ 𝐵 ⋅R

Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, Π, 𝐴 \ 𝐵, Δ → 𝐶

\L 𝐴,Π → 𝐵
Π → 𝐴 \ 𝐵

\R

Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, 𝐵 / 𝐴, Π, Δ → 𝐶

/L Π,𝐴 → 𝐵
Π → 𝐵 / 𝐴

/R

Π → 𝐴 Γ,𝐴, Δ → 𝐶
Γ, Π, Δ → 𝐶 Cut

▶ Product ismultiplicative conjunction, and divisions
(residuals) are directed implications.

▶ The Cut rule is eliminable.
▶ We allow empty left-hand sides of sequents.
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Lambek Grammars

𝑁, (𝑁 \ 𝑆) / 𝑁, 𝑁 → 𝑆
John likes Mary

▶ Here only \L and /L are used.

𝑁 / 𝐶𝑁, 𝐶𝑁, (𝐶𝑁 \ 𝐶𝑁) / (𝑆 / 𝑁 ), 𝑁, (𝑁 \ 𝑆) / 𝑁, (𝑁 \ 𝑆) / 𝑁, 𝑁 → 𝑆

The girl whom John likes hates John

▶ Here we also use /R, to show that “John likes” is of type (𝑆 / 𝑁 ).

the girl whom John met yesterday … → 𝑁
▶ This is a more complicated phrase, for which an extension of the

Lambek calculus is used.
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Models for the Lambek Calculus

▶ The Lambek calculus is the algebraic logic of residuated
monoids, which a partially ordered monoids with residuals:

𝑎 ≼ 𝑐 / 𝑏 ⟺ 𝑎 ⋅ 𝑏 ≼ 𝑐 ⟺ 𝑏 ≼ 𝑎 \ 𝑐.

▶ Lingustic applications motivate a concrete family of residuated
monoids, whose elements are formal languages over an
alphabet Σ, where

𝐴 ⋅ 𝐵 = {𝑢𝑣 ∣ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}
𝐴 \ 𝐵 = {𝑢 ∈ Σ∗ ∣ 𝐴 ⋅ {𝑢} ⊆ 𝐵}
𝐵 / 𝐴 = {𝑢 ∈ Σ∗ ∣ {𝑢} ⋅ 𝐴 ⊆ 𝐵}

▶ Completeness was proved by Pentus [1998].
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Models for the Lambek Calculus

▶ Another family of residuated monoids is formed by algebras of
binary relations, of the form 𝒫 (𝑊 × 𝑊) for a non-empty 𝑊.

▶ These are viewed as non-deterministic actions in a computing
system.

▶ Product is relational composition, and divisions are “conditional
actions”:

𝑅 ⋅ 𝑆 = 𝑅 ∘ 𝑆 = {(𝑥, 𝑧) ∈ 𝑊 × 𝑊 ∣ ∃𝑦 ∈ 𝑊 ((𝑥, 𝑦) ∈ 𝑅 and (𝑦 , 𝑧) ∈ 𝑆)}
𝑅 \ 𝑆 = {(𝑦, 𝑧) ∈ 𝑊 × 𝑊 ∣ 𝑅 ∘ {(𝑦 , 𝑧)} ⊆ 𝑆}
𝑆 / 𝑅 = {(𝑥, 𝑦) ∈ 𝑊 × 𝑊 ∣ {(𝑥, 𝑦)} ∘ 𝑅 ⊆ 𝑆}

▶ Completeness proved by Andréka and Mikulás [1994].
▶ Notice that completeness (for both classes of models) quickly

ruins when one extends the set of operations!
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Additive Operations and Constants

MALC, themultiplicative-additive Lambek calculus, is obtained
from L by means of additive conjunction ∧, additive disjunction ∨,
and constants 0 and 1.

Γ, 𝐴, Δ → 𝐶 Γ, 𝐵, Δ → 𝐶
Γ, 𝐴 ∨ 𝐵, Δ → 𝐶 ∨L Π → 𝐴

Π → 𝐴 ∨ 𝐵
Π → 𝐵

Π → 𝐴 ∨ 𝐵 ∨R

Γ, 𝐴, Δ → 𝐶
Γ, 𝐴 ∧ 𝐵, Δ → 𝐶

Γ, 𝐵, Δ → 𝐶
Γ, 𝐴 ∧ 𝐵, Δ → 𝐶 ∧L Π → 𝐴 Π → 𝐵

Π → 𝐴 ∧ 𝐵 ∧R

Γ, 0, Δ → 𝐶 0L
Γ, Δ → 𝐶
Γ, 1, Δ → 𝐶 1L → 1 1R



Exponential and Subexponentials

▶ We further extendMALC by means of linear logic
exponential modality, yielding !MALC:

Γ, 𝐴, Δ → 𝐶
Γ, !𝐴, Δ → 𝐶 !L

!𝐴1, … , !𝐴𝑛 → 𝐵
!𝐴1, … , !𝐴𝑛 → !𝐵 !R

Γ, Δ → 𝐶
Γ, !𝐴, Δ → 𝐶 !W

Γ, 𝐵, !𝐴, Δ → 𝐶
Γ, !𝐴, 𝐵, Δ → 𝐶

Γ, !𝐴, 𝐵, Δ → 𝐶
Γ, 𝐵, !𝐴, Δ → 𝐶 !P

Γ, !𝐴, !𝐴, Δ → 𝐶
Γ, !𝐴, Δ → 𝐶 !C

▶ A more fine-grained structural control is given by
subexponentials, in a polymodal system of !𝑠 indexed by
𝑠 ∈ ℐ, where ℐ bears a partial order ⪯.

▶ Introduction rules:

Γ, 𝐴, Δ → 𝐶
Γ, !𝑠𝐴, Δ → 𝐶 !L

!𝑠1𝐴1, … , !𝑠𝑛𝐴𝑛 → 𝐵
!𝑠1𝐴1, … , !𝑠𝑛𝐴𝑛 → !𝑠𝐵

!R, 𝑠𝑖 ⪰ 𝑠
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▶ In ℐ, we designate three subsets, 𝒲, ℰ, and 𝒞, upward-closed
under ⪯.

▶ These sets control which structural rules are allowed:

Γ, Δ → 𝐶
Γ, !𝑤𝐴, Δ → 𝐶

!W, 𝑤 ∈ 𝒲 Γ, 𝐵, !𝑒𝐴, Δ → 𝐶
Γ, !𝑒𝐴, 𝐵, Δ → 𝐶

Γ, !𝑒𝐴, 𝐵, Δ → 𝐶
Γ, 𝐵, !𝑒𝐴, Δ → 𝐶

!P, 𝑒 ∈ ℰ

Γ, !𝑐𝐴, Φ, !𝑐𝐴, Δ → 𝐶
Γ, !𝑐𝐴, Φ, Δ → 𝐶

Γ, !𝑐𝐴, Φ, !𝑐𝐴, Δ → 𝐶
Γ, Φ, !𝑐𝐴, Δ → 𝐶

!NC, 𝑐 ∈ 𝒞

▶ Notice that contaction here appears in its non-local form,
otherwise cut-elimination fails for 𝑐 ∈ 𝒞 − ℰ
[Bayu Surarso, Ono 1996; Kanovich, K., Nigam, Scedrov 2018].

▶ Since !W and !NC simulate !P, we postulate𝒲 ∩ 𝒞 ⊆ ℰ.
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Subexponentials in Lambek Grammars

▶ The permutation modality (𝑒 ∈ ℰ, 𝑒 ∉ 𝒲 ∩ 𝒞) is used for
modelling medial extraction:

𝑁 / 𝐶𝑁, 𝐶𝑁, (𝐶𝑁 \ 𝐶𝑁) / (𝑆 / !𝑒𝑁), 𝑁, (𝑁 \ 𝑆) / 𝑁, (𝑁 \ 𝑆) \ (𝑁 \ 𝑆) → 𝑁

the girl whom John met yesterday

▶ Contraction is used for modellingmultiple (parasitic)
extraction: “the paper that the reviewer of [] accepted []
without reading []”.

▶ Notice that weakening is linguistically inacceptable, so we have
the so-called relevant modality: 𝑟 ∈ 𝒞 ∩ ℰ, 𝑟 ∉ 𝒲.

▶ In real linguistic applications, even more sophisticated,
semi-non-associative, systems of structural control are used
[Morrill 1992; Moortgat 1996].
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Decidability and Undecidability

▶ The derivability problem in L is algorithmically decidable,
being NP-complete [Pentus 2006].

▶ The one-division fragment of L is in P [Savateev 2009], and so is
L with bounded depth of formulae [Pentus 2010].

▶ Derivability inMALC is also decidable, being
PSPACE-complete [Kanovich 1994; ...]

▶ In contrast, !MALC is undecidable (Σ01-complete).
▶ The reason is undecidability of entailment from finite sets of

hypotheses. The latter is encoded via modalised deduction
theorem:

→ 𝐴1, … , → 𝐴𝑛 ⊢MALC Π → 𝐶 ⟺ ⊢!MALC !𝐴1, … , !𝐴𝑛, Π → 𝐶.
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Decidability and Undecidability

▶ Undecidability of entailment, even in the language including
only ⋅ and \, easily follows from undecidability in semi-Thue
systems [Thue 1914; Markov 1947; Post 1947].

▶ Buszkowski [1982] introduced a more sophisticated encoding,
which shows undecidability of entailment in the one-division
fragment of L.

▶ Therefore, the fragment of !MALC with only \ and ! is already
undecidable.

▶ To compare, in the commutative case undecidability of linear
logic uses additive disjunction [Lincoln, Mitchell, Scedrov, Shankar
1992].

▶ (Un)decidability ofMELL (multiplicative-additive commutative
linear logic) is a long-standing open question.
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Undecidability with Subexponentials

▶ In fact, for undecidability it is sufficient to have a
subexponential which allows non-local contraction (𝑐 ∈ 𝒞)
[Kanovich, K., Nigam, Scedrov 2018].

▶ If no subexponential allows contraction, the system is decidable.

▶ With local contraction, cut-elimination can be restored in two
ways. One either restricts the right rule

Γ, 𝐴, Δ → 𝐶
Γ, !𝐴, Δ → 𝐶 !L !𝐴 → 𝐵

!𝐴 → !𝐵 !1R
Γ, !𝐴, !𝐴, Δ → 𝐶
Γ, !𝐴, Δ → 𝐶 !C

or allows contraction of sequences of !-formulae:

Γ, 𝐴, Δ → 𝐶
Γ, !𝐴, Δ → 𝐶 !L !Π → 𝐵

!Π → !𝐵 !R
Γ, !Π, !Π, Δ → 𝐶
Γ, !Π, Δ → 𝐶 !MC

(Here if Π = 𝐴1, … , 𝐴𝑛, then !Π = !𝐴1, … , !𝐴𝑛.)
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Undecidability with Subexponentials

▶ For the second system, undecidability was proved by Valinkin
[2022], building upon the construction of [Chvalovský, Horčík
2016].

▶ For the first system, (un)decidability remains an open question.

▶ It is interesting that local contraction subexponentials allow
natural interpretations over algebras of binary relations, with
completeness theorems [Valinkin, K. 2025].

▶ Namely, ! is interpreted as a monotone idempotent operation
on binary relations which maps any relation to its dense
subrelation.

▶ For the second system, ! should also commute with product:
!𝑅 ∘ !𝑆 ⊆ !(𝑅 ∘ 𝑆).
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!𝑅 ∘ !𝑆 ⊆ !(𝑅 ∘ 𝑆).
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Kleene Star
▶ An even more intriguing operation on formal languages is the

Kleene star:
𝐴∗ =

∞
⋃
𝑛=0

𝐴𝑛.

▶ On binary relations, this is reflexive-transitive closure.
▶ In abstract residuated lattices, there are two ways of defining

the Kleene star—either as a least fixpoint:

𝑎∗ = min {𝑏 ∣ 1 ∨ 𝑎 ⋅ 𝑏 ≼ 𝑏},

or as the supremum of powers:

𝑎∗ = sup {𝑎𝑛 ∣ 𝑛 ∈ 𝜔}.

▶ This gives action lattices and their ∗-continuous subclass
[Pratt 1991; Kozen 1994].

▶ Positive iteration (“Kleene plus”) is defined: 𝐴+ = 𝐴 ⋅ 𝐴∗.
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(Infinitary) Action Logic

▶ The algebraic logic of ∗-continuous action lattices is infinitary
action logic ACT𝜔 [Palka 2007], obtained from MALC by the
following rules:

(Γ, 𝐴𝑛, Δ → 𝐶)∞𝑛=0
Γ, 𝐴∗, Δ → 𝐶

∗L𝜔
Π1 → 𝐴 … Π𝑛 → 𝐴

Π1, … , Π𝑛 → 𝐴∗ ∗R𝑛

▶ For the general class of action lattices, the logic is action logic
ACT:

→ 𝐵 𝐴, 𝐵 → 𝐵
𝐴∗ → 𝐵

∗Lfix
Π → 𝐴 Γ,𝐴, Δ → 𝐶

Γ, Π, Δ → 𝐶 Cut

→ 𝐴∗ ∗R0
Π → 𝐴 Δ → 𝐴∗

Π, Δ → 𝐴∗ ∗R

▶ Notice that Cut is eliminable in ACT𝜔, but not in ACT.
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Undecidability of Action Logic
▶ Buszkowski [2007] proved Π0

1-completeness of derivability in
ACT𝜔 by reducing the totality problem for context-free
grammars.

▶ The upper bound proved by Palka [2007].

▶ A context-free grammar is total, if it generates all non-empty
words over Σ.

▶ Lambek grammars have the same power as context-free ones
[Bar-Hillel, Gaifman, Shamir 1960; Pentus 1992].

▶ In a Lambek grammar, each letter 𝑎 ∈ Σ gets several formulae
associated to it: 𝑎B 𝐴.

▶ Let
𝐹𝑎 = ⋀{𝐴 ∣ 𝑎B 𝐴} and 𝐸 = ⋁

𝑎∈Σ
𝐹𝑎.

▶ Now the grammar is total iff the following sequent is derivable
in ACT𝜔:

𝐸+ → 𝑆.
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Undecidability of Action Logic

▶ Π0
1-completeness of the totality problem for context-free

grammars is well-known.

▶ The construction is as follows: for a Turing machine M one
constructs a grammar 𝐺M, which generates all non-empty
words, except the halting protocol (if such exists).

▶ Thus, 𝐺M is total iff M does not halt.
▶ For proving undecidability of the weaker system ACT, we

introduce the notion of regular totality for context-free
grammars, which captures circular runs of Turing machines.

▶ A grammar 𝐺 is regularly total, if it includes the following
rules:

𝑆 ⇒ 𝑎𝑌𝑇 𝑇 ⇒ 𝑎 𝑇 ⇒ 𝑎𝑇 ,

and the following holds: (1) 𝑌 ⇒∗ 𝑤 for each 𝑤 with |𝑤 | = 𝑛;
(2) 𝑆 ⇒∗ 𝑤 for each 𝑤 with |𝑤 | ⩽ 𝑛 + 1.
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Undecidability of Action Logic

▶ Regular totality means that, starting from some 𝑛, the grammar
generates all non-empty words of the corresponding length in a
regular fashion, using rules for 𝑇.

▶ Let all machines have a designated “capturing” state 𝑞𝑐, in
which the machine gets stuck.

▶ We construct 𝐺M in such way that if M gets into 𝑞𝑐 (looping),
then 𝐺M is regularly total.

▶ For a regularly total 𝐺M, the sequent 𝐸+ → 𝑆 is provable already
in ACT.

▶ Unfortunately, the converse does not hold: there could be cases
where 𝐸+ → 𝑆 is derivable in ACT, but M does not loop.
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Effective Inseparability

▶ In order to handle this, the indirect technique of effective
inseparability is used.

▶ Let 𝑊𝑥 be the r.e. set of index 𝑥.
▶ Two disjoint sets 𝐴, 𝐵 ⊆ ℕ are effectively inseparable, if there is

a computable function 𝑓 (𝑥, 𝑦) with the following property.
If 𝑊𝑥 ⊇ 𝐴, 𝑊𝑦 ⊇ 𝐵, and 𝑊𝑥 ∩𝑊𝑦 = ∅, then 𝑓 (𝑥, 𝑦) ∉ 𝑊𝑥 ∪𝑊𝑦.

𝑊𝑥 𝑊𝑦

𝐴 𝐵

𝑓 (𝑥, 𝑦)

▶ 𝑓 effectively prevents 𝐴 and 𝐵 from being separated by a
decidable set.
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▶ Therefore, the set of machines for which 𝐸+ → 𝑆 is provable in
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▶ Moreover, as follows from [Myhill 1955], any r.e. set separating
two r.e. effectively inseparable sets, is Σ01-complete.
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Exponential and Kleene Star

▶ Now let us put things together and introduce !ACT𝜔, a system
including both the exponential and the Kleene star (with
infinitary axiomatisation).

▶ It turns out that complexity grows dramatically, and !ACT𝜔 is
Π1
1-complete [K., Speranski 2022].

▶ The upper bound here comes from a very general argument for
infinitary calculi of the given form.

▶ For the lower bound, we use Kozen’s result on Π1
1-completeness

for reasoning from hypotheses in Kleene algebra—in the
language of ∗ and ⋅, without residuals [Kozen 2002].

▶ Kozen encodes the well-foundedness problem for a
recursively defined relation 𝑅 ⊆ ℕ × ℕ.

▶ Next we, again, internalise reasoning from hypotheses into
!ACT𝜔 using modalised deduction theorem.
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Exponential and Kleene Star

▶ Kozen’s construction works as follows. The Turing machine
computing 𝑅 on input (𝑥, 𝑦) starts at the configuration 𝑠 𝑎𝑦 𝑏𝑥.

▶ If the answer is “no,” (𝑥, 𝑦) ∉ 𝑅, then it ends in configuration 𝑟
(“reject”).

▶ Otherwise, it yields 𝑡 𝑏𝑦.
▶ The machine’s commands are presented as a semi-Thue system,

whose rules are translated into Lambek hypotheses:
𝑥1, … , 𝑥𝑚 → 𝑦1 ⋅ … ⋅ 𝑦𝑘.

▶ We add an “infinitary semi-Thue rule” 𝑡 ⇒ 𝑠 𝑎∗, which is
responsible for restarting the computation on input (𝑦 , 𝑧), for
all 𝑧.

▶ Well-foundedness of 𝑅 is equivalent to well-foundedness (e.g.,
correctness) of the proof of 𝑡 , 𝑏∗ → 𝑟 from the given set of
hypotheses in ACT𝜔.
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Iterative Divisions

▶ By combining Kozen’s reasoning and the construction from
[Buszkowski 1982], we can trade product and iteration for
division and iterative division—a compound connective of the
form 𝐴 \\ 𝐵 = 𝐴∗ \ 𝐵 [Kanovich, K., Scedrov 2025].

▶ Iterative divisions were introduced by Sedlár [2019], in a
non-associative setting.

▶ The advantage of iterative divisions over Kleene star is that in
the language of \, /, \\, //, ∧ we have completeness, both for
language and relational semantics [K., Ryzhkova 2020; K. 2024].

▶ We have obtained Π1
1-completeness for derivability in the

(\, \\, !)-fragment of !ACT𝜔 and for entailment from finite sets
of hypotheses in the (\, \\)-fragment of ACT𝜔.

▶ We shall need this result later on.
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Fragments of !ACT𝜔

▶ A very interesting fragment of !ACT𝜔 is the one where the
Kleene star is not allowed to be used under the exponential.

▶ For this fragment, we manage to prove an 𝜔𝜔 upper bound on
its closure ordinal.

▶ In an infinitary calculus, the set of derivable sequents is the limit
of sets 𝑆𝛼, “the sequents derived at rank 𝛼.” The closure ordinal is
the supremum of ranks.

▶ For each sequent we recursively compute its ordinal measure,
which is multiplied by 𝜔 and increased by 1 at each occurrence
of Kleene star (for binary connectives we take the natural sum).

▶ Ordinal measures are < 𝜔𝜔, and they control the closure ordinal.
▶ By 𝐻(𝛼) (for 𝛼 ≤ 𝜔𝜔) we denote the 𝛼 iteration of Turing jump.

▶ In particular, 𝐻(𝑛) is the standard Σ0
𝑛-complete set.
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Fragments of !ACT𝜔
▶ By computable transfinite induction we construct

reductions from derivability of sequents of measure ≤ 𝛼 (with
the given restriction) to 𝐻(𝛼′), where 𝛼′ is an ordinal close to 𝛼.

▶ If 𝛼 = 𝛽 ⋅ 𝜔 + 𝑘, then 𝛼 ′ = 𝛽 ⋅ 𝜔 + 2𝑘 + 1.
▶ This gives a reduction from derivability in the given fragment

of !ACT𝜔 to 𝐻(𝜔𝜔), i.e., establishes a Σ0𝜔𝜔 upper bound [K.,
Pshenitsyn, Speranski 2025].

▶ Our notation here is not entirely standard, as usually (see
[Rogers 1967]) on limit steps an extra Turing jump is added.

▶ Astonishingly, the Σ0𝜔𝜔 complexity estimation is exact!
▶ The lower bound is proved via encoding truth of computable

infinitary propositional formulae of rank < 𝜔𝜔 [Ash, Knight 2000;
Montalbán 2022].

▶ As a matter of fact, a similar technique applied to ACT𝜔
computes Π0

1-formulae defining derivability for sequents of
given ordinal measure. This gives an alternative Π0

1 upper
bound proof.
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Theories of Language and Relational Models

▶ Constants 0 and 1 allow simulating the exponential modality, in
models over algebras of formal languages and algebras of
binary relations [Kanovich, K., Scedrov 2025].

▶ This becomes possible, since in the presence of constants
completeness does not hold.

▶ In models on languages, the construction 1 ∧ 𝐴 is ∅ (“zero”), if
→ 𝐴 is not true in the model, and {𝜀} (“unit”) otherwise.

▶ This yields modalised deduction theorem: → 𝐴 ⊨ → 𝐵 iff
⊨ 1 ∧ 𝐴 → 𝐵.

▶ From this, using strong completeness and complexity results,
one derives Π1

1-completeness for the equational theory of
formal language algebras, in the language of \, \\, ∧, 1.



Theories of Language and Relational Models

▶ Constants 0 and 1 allow simulating the exponential modality, in
models over algebras of formal languages and algebras of
binary relations [Kanovich, K., Scedrov 2025].

▶ This becomes possible, since in the presence of constants
completeness does not hold.

▶ In models on languages, the construction 1 ∧ 𝐴 is ∅ (“zero”), if
→ 𝐴 is not true in the model, and {𝜀} (“unit”) otherwise.

▶ This yields modalised deduction theorem: → 𝐴 ⊨ → 𝐵 iff
⊨ 1 ∧ 𝐴 → 𝐵.

▶ From this, using strong completeness and complexity results,
one derives Π1

1-completeness for the equational theory of
formal language algebras, in the language of \, \\, ∧, 1.



Theories of Language and Relational Models

▶ Constants 0 and 1 allow simulating the exponential modality, in
models over algebras of formal languages and algebras of
binary relations [Kanovich, K., Scedrov 2025].

▶ This becomes possible, since in the presence of constants
completeness does not hold.

▶ In models on languages, the construction 1 ∧ 𝐴 is ∅ (“zero”), if
→ 𝐴 is not true in the model, and {𝜀} (“unit”) otherwise.

▶ This yields modalised deduction theorem: → 𝐴 ⊨ → 𝐵 iff
⊨ 1 ∧ 𝐴 → 𝐵.

▶ From this, using strong completeness and complexity results,
one derives Π1

1-completeness for the equational theory of
formal language algebras, in the language of \, \\, ∧, 1.



Theories of Language and Relational Models

▶ Constants 0 and 1 allow simulating the exponential modality, in
models over algebras of formal languages and algebras of
binary relations [Kanovich, K., Scedrov 2025].

▶ This becomes possible, since in the presence of constants
completeness does not hold.

▶ In models on languages, the construction 1 ∧ 𝐴 is ∅ (“zero”), if
→ 𝐴 is not true in the model, and {𝜀} (“unit”) otherwise.

▶ This yields modalised deduction theorem: → 𝐴 ⊨ → 𝐵 iff
⊨ 1 ∧ 𝐴 → 𝐵.

▶ From this, using strong completeness and complexity results,
one derives Π1

1-completeness for the equational theory of
formal language algebras, in the language of \, \\, ∧, 1.



Theories of Language and Relational Models

▶ Constants 0 and 1 allow simulating the exponential modality, in
models over algebras of formal languages and algebras of
binary relations [Kanovich, K., Scedrov 2025].

▶ This becomes possible, since in the presence of constants
completeness does not hold.

▶ In models on languages, the construction 1 ∧ 𝐴 is ∅ (“zero”), if
→ 𝐴 is not true in the model, and {𝜀} (“unit”) otherwise.

▶ This yields modalised deduction theorem: → 𝐴 ⊨ → 𝐵 iff
⊨ 1 ∧ 𝐴 → 𝐵.

▶ From this, using strong completeness and complexity results,
one derives Π1

1-completeness for the equational theory of
formal language algebras, in the language of \, \\, ∧, 1.



Theories of Language and Relational Models
▶ For algebras of binary relations, the construction is a bit more

involved.

▶ As a substitute for !𝐴, we take 𝐴 = 1 ∧ (0 / (0 / (1 ∧ 𝐴))).
▶ Again, we have modalised deduction theorem: → 𝐴 ⊨ → 𝐵 iff

⊨ 𝐴 → 𝐵.
▶ Any finite set of hypotheses can be encoded as one of the form

→ 𝐴.
▶ Now we prove Π1

1-hardness. For 𝐴, 𝐵 in the language of \, \\, ∧,
we have

→ 𝐴 ⊢ → 𝐵 ⟺ → 𝐴 ⊨ → 𝐵 ⟺ ⊨ 𝐴 → 𝐵.

▶ The upper Π1
1 bounds come from a general Löwenheim–Skolem

style reasoning.
▶ Thus, we get Π1

1-completeness for the equational theory of
algebras of binary relations, in the language of \, \\, ∧, 0, 1.

▶ This solves an open problem by Buszkowski [1982], who
conjectures Π0

1-completeness.
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Non-Associative Lambek Calculus

▶ The non-associative Lambek calculus NL goes even more
substructural and abandons the implicit rule of associativity.

▶ Left-hand sides of sequents are now bracketed structures
(binary trees) of formulae.

▶ The inference rules are reformulated accordingly:

Γ[(𝐴, 𝐵)] → 𝐶
Γ[𝐴 ⋅ 𝐵] → 𝐶 ⋅L Γ → 𝐴 Δ → 𝐵

(Γ, Δ) → 𝐴 ⋅ 𝐵 ⋅R

Π → 𝐴 Γ(𝐵) → 𝐶
Γ[(Π, 𝐴 \ 𝐵)] → 𝐶

\L
(Π, 𝐴) → 𝐵
Π → 𝐴 \ 𝐵

\R

▶ Hopefully we hear more on non-associative systems in the talk
by Michael Moortgat.

▶ In NL without additives and in the distributive version of NL
with additives, entailment from finite sets of hypotheses is
decidable [Buszkowski, Farulewski 2009].
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with additives, entailment from finite sets of hypotheses is
decidable [Buszkowski, Farulewski 2009].



Non-Associativity and Distributivity

▶ In multiplicative-additive NL without distributivity, it is
undecidable [Chvalovský 2015].

▶ This allows proving some undecidability results for
subexponential extensions of NL [Blaisdell, Kanovich, K.,
Pimentel, Scedrov 2022].

▶ Sedlár [2019] shows decidability of NL with additives and
iterative divisions, again in the presence of distributivity.

▶ In the associative setting, in contrast, distributivity is usually an
obstacle.

▶ In particular, we do not know exact complexity of distributive
versions ofMALC and ACT𝜔.

▶ Decidability of distributiveMALC shown by Kozak [2009].



Non-Associativity and Distributivity

▶ In multiplicative-additive NL without distributivity, it is
undecidable [Chvalovský 2015].

▶ This allows proving some undecidability results for
subexponential extensions of NL [Blaisdell, Kanovich, K.,
Pimentel, Scedrov 2022].

▶ Sedlár [2019] shows decidability of NL with additives and
iterative divisions, again in the presence of distributivity.

▶ In the associative setting, in contrast, distributivity is usually an
obstacle.

▶ In particular, we do not know exact complexity of distributive
versions ofMALC and ACT𝜔.

▶ Decidability of distributiveMALC shown by Kozak [2009].



Non-Associativity and Distributivity

▶ In multiplicative-additive NL without distributivity, it is
undecidable [Chvalovský 2015].

▶ This allows proving some undecidability results for
subexponential extensions of NL [Blaisdell, Kanovich, K.,
Pimentel, Scedrov 2022].

▶ Sedlár [2019] shows decidability of NL with additives and
iterative divisions, again in the presence of distributivity.

▶ In the associative setting, in contrast, distributivity is usually an
obstacle.

▶ In particular, we do not know exact complexity of distributive
versions ofMALC and ACT𝜔.

▶ Decidability of distributiveMALC shown by Kozak [2009].



Non-Associativity and Distributivity

▶ In multiplicative-additive NL without distributivity, it is
undecidable [Chvalovský 2015].

▶ This allows proving some undecidability results for
subexponential extensions of NL [Blaisdell, Kanovich, K.,
Pimentel, Scedrov 2022].

▶ Sedlár [2019] shows decidability of NL with additives and
iterative divisions, again in the presence of distributivity.

▶ In the associative setting, in contrast, distributivity is usually an
obstacle.

▶ In particular, we do not know exact complexity of distributive
versions ofMALC and ACT𝜔.

▶ Decidability of distributiveMALC shown by Kozak [2009].



Non-Associativity and Distributivity

▶ In multiplicative-additive NL without distributivity, it is
undecidable [Chvalovský 2015].

▶ This allows proving some undecidability results for
subexponential extensions of NL [Blaisdell, Kanovich, K.,
Pimentel, Scedrov 2022].

▶ Sedlár [2019] shows decidability of NL with additives and
iterative divisions, again in the presence of distributivity.

▶ In the associative setting, in contrast, distributivity is usually an
obstacle.

▶ In particular, we do not know exact complexity of distributive
versions ofMALC and ACT𝜔.

▶ Decidability of distributiveMALC shown by Kozak [2009].



Non-Associativity and Distributivity

▶ In multiplicative-additive NL without distributivity, it is
undecidable [Chvalovský 2015].

▶ This allows proving some undecidability results for
subexponential extensions of NL [Blaisdell, Kanovich, K.,
Pimentel, Scedrov 2022].

▶ Sedlár [2019] shows decidability of NL with additives and
iterative divisions, again in the presence of distributivity.

▶ In the associative setting, in contrast, distributivity is usually an
obstacle.

▶ In particular, we do not know exact complexity of distributive
versions ofMALC and ACT𝜔.

▶ Decidability of distributiveMALC shown by Kozak [2009].



Thanks

Thanks!∗

▶ This talk is partially based on joint work with Eben Blaisdell, Max Kanovich,
Glyn Morrill, Vivek Nigam, Elaine Pimentel, Tikhon Pshenitsyn, Andre
Scedrov, and Stanislav Speranski, all of whom the author is indebted to.

▶ The work of S. K. was performed at Steklov International Mathematical
Centre and supported by the Ministry of Science and Higher Education of the
Russian Federation (agreement no. 075-15-2025-303).


