
Normalization in the λµµ′-calculus

Péter Battyányi

Joint work with Karim Nour

26th September 2025, Dubrovnik

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

Let A,B are arbitrary formulas, then the implicational fragment of
the intuitionistic propositional calculus is defined as follows:

ax
A ⊢ A

Γ,A ⊢ B
→i

Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A →e
Γ ⊢ B

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

Derivations are written in the form of a proof tree. For example,

A,B ⊢ A
→i

A ⊢ B → A →i
⊢ A → (B → A)

Or,

Γ ⊢ A → (B → C) Γ ⊢ A
→e

Γ ⊢ B → C

Γ ⊢ A → B Γ ⊢ A →e
Γ ⊢ B →e ,

Γ ⊢ C

where Γ = {A → (B → C),A → B,A}.

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

The λ-terms are defined by the following grammar:

Λ = V | (λV.Λ) | (Λ)Λ,

where V = {x , y , z , . . .} are the set of variables.

We adopt Krivine’s notation, hence (M)N stands for the
application of N to M. Moreover, we use the abbreviation
(M1)M2 . . .Mn−1Mn for the term (. . . (M1)M2) . . .)Mn−1)Mn.
Observe that (M)NP and (M)(N)P denote different terms.

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

Given an abstraction of the form λx .M, we say that the outermost
prefix λx binds the free occurrences of x in M. All the variable
occurrences that are not bound are said to be free. The set of free
variables of M is denoted by fv(M). To avoid the capture of free
variables, we accept the Barendregt convention for the term
notation: we identify terms that only differ in the names of bound
variables.

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

The types are built from a set VT of atomic types with the
connective →. The type formation rules are the following.

T := VT | T → T

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

Let Γ denote a (possibly empty) context, that is, a finite set of
declarations of the form x : A. If Γ is a context, let
|Γ| = {A | x : A ∈ Γ for some x}. The typing rules are as follows.

Γ, x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx .M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ (M)N : B

The λ-term M is called typable with type A, if Γ ⊢ M : A is
derivable using the rules and axioms.

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

Let Γ = {x : A → (B → C), y : A → B, z : A}. Then,

Γ ⊢ x : A → (B → C) Γ ⊢ z : A

Γ ⊢ (x)z : B → C

Γ ⊢ y : A → B Γ ⊢ z : A

Γ ⊢ (y)z : B

Γ ⊢ ((x)z)(y)z : C

x : A → (B → C), y : A → B ⊢ λz .((x)z)(y)z : A → C

x : A → (B → C) ⊢ λyz .((x)z)(y)z : (A → B) → (A → C)

⊢ λxyz .((x)z)(y)z : (A → (B → C)) → ((A → B) → (A → C))

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

When we omit the indications of the terms, we obtain a correct
derivation of the end formula.

|Γ| ⊢ A → (B → C) |Γ| ⊢ A

|Γ| ⊢ B → C

|Γ| ⊢ A → B |Γ| ⊢ A

|Γ| ⊢ B

|Γ| ⊢ C

A → (B → C),A → B ⊢ A → C

A → (B → C) ⊢ (A → B) → (A → C)

⊢ (A → (B → C)) → ((A → B) → (A → C))

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

This phenomenon is referred to as the Curry–Howard isomorphism
and was first observed by Curry in the 1930s and (re)discovered by
Howard in 1968.
It was widely believed that the Curry–Howard isomorphism is valid
only for intuitionistic logic, until Griffin and Murthy discovered in
the 1990s that certain terms expressing control can be given the
type ¬¬A → A.

Péter Battyányi Normalization in the λµµ′-calculus

Introduction

From that point on, several calculi realizing the Curry-Howard
isomorphism for classical logic have been discovered. For example,

Rehof and Sorensen’s λ∆,
Curien and Herbelin’s λ̄µµ̃,
Krivine’s λC,
Berardi and Barbanera’s λSym,
Parigot’s λµ.

In what follows, we look at Parigot’s simply typed λµ-calculus in
more detail.

Péter Battyányi Normalization in the λµµ′-calculus

Definitions and notation

Let Vλ = {x , y , z , . . . } denote a set of λ-variables and
Vµ = {α, β, γ, . . . } denote a set of µ-variables, respectively.
The λµ-term formation rules are the following.

T := Vλ | λVλ.T | (T)T | [Vµ]T | µVµ.T

In a λµ-term, the λ and µ operators bind the variables in their
scope. We consider terms modulo the equivalence relation,
which allows to rename the variables bound by a λ- or a
µ-abstraction.

Péter Battyányi Normalization in the λµµ′-calculus

Definitions and notation

We are concerned with the λµ-calculus as modified by de Groote.
Parigot’s original definition was different but had certain
shortcomings: although the calculus was strongly normalizing
(Parigot), some closed formulas did not admit an assumptionless
derivation in the calculus. More importantly, Böhm’s theorem did
not hold for the calculus (David and Py). These drawbacks were
eliminated in de Groote’s version (Saurin), at the price of sacrificing
strong normalization.

Péter Battyányi Normalization in the λµµ′-calculus

Definitions and notation

The types are built from a set VT of atomic types and the constant
⊥ with the connectives ¬ and →. The type formation rules are the
following.

T := VT ∪ {⊥} | ¬T | T → T

In the definition below Γ denotes a (possibly empty) context, that
is, a finite set of declarations of the form x : A (resp. α : ¬A) for a
λ-variable x (resp. a µ-variable α) and type A such that a
λ-variable x (resp. a µ-variable α) occurs at most once in an
expression x : A (resp. α : ¬A) of Γ. We also write ¬A for A → ⊥.

Péter Battyányi Normalization in the λµµ′-calculus

Definitions and notation

The typing rules are as follows.

ax
Γ, x : A ⊢ x : A

Γ, x : A ⊢ M : B
→i

Γ ⊢ λx .M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A →e
Γ ⊢ (M)N : B

Γ, α : ¬A ⊢ M : A
⊥i

Γ, α : ¬A ⊢ [α]M : ⊥
Γ, α : ¬A ⊢ M : ⊥

⊥e
Γ ⊢ µα.M : A

Péter Battyányi Normalization in the λµµ′-calculus

Definitions and notation

Below, let Γ = {x : ¬B → ¬A, y : A, z : B, α : ¬B} and
Γ′ = Γ \ {z : B}. Then

Γ ⊢ z : B

Γ ⊢ [α]z : ⊥
Γ′ ⊢ λz .[α]z : ¬B

Γ′ ⊢ (x)λz .[α]z : ¬A Γ′ ⊢ y : A

Γ′ ⊢ ((x)λz .[α]z)y : ⊥
x : ¬B → ¬A, y : A ⊢ µα.((x)λz .[α]z)y : B

x : ¬B → ¬A ⊢ λy .µα.((x)λz .[α]z)y : A → B

⊢ λxy .µα.((x)λz .[α]z)y : (¬B → ¬A) → (A → B)

Péter Battyányi Normalization in the λµµ′-calculus

Definitions and notation

If we omit the terms annotating the type formulas, we obtain a full
fledged proof of (¬B → ¬A) → (A → B).

|Γ′| ⊢ ¬B → ¬A(4)

|Γ| ⊢ B(1) |Γ| ⊢ ¬B(2)

|Γ| ⊢ ⊥
(1)

|Γ′| ⊢ ¬B
|Γ′| ⊢ ¬A |Γ′| ⊢ A(3)

|Γ′| ⊢ ⊥
(2)

¬B → ¬A,A ⊢ B
(3)

¬B → ¬A ⊢ A → B
(4)

⊢ (¬B → ¬A) → (A → B)

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

We use several types of substitution in the λµ-calculus.
β-substitution: M[x := N] is obtained from M by exchanging
the free occurrences of x in M with N. Throughout our
discussion we assume that bound variables are renamed when
necessary.
µ-substitution: M[α :=r N] is obtained from M when we
replace all subterm occurrences [α]U of M by [α](U)N
recursively.
µ′-substitution: M[α :=l N] is obtained from M when we
replace all subterm occurrences [α]U of M by [α](N)U in a
recursive manner.
ρ-substitution: M[α := β] is obtained from M by replacing the
free occurrences of α in M by β

The notation Mα stands for the erasure of every occurrence of [α]
from M.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

With this in hand, we are able to define the reduction rules.
β-reduction: (λxA.MB)NA : B →β MB [x := N] : B

µ-reduction:
(µα¬(A→B).M⊥)NA : B → µα¬B .M⊥[α :=r N] : B

µ′-reduction:
(N)A→Bµα¬A.M⊥ : B → µα¬B .M⊥[α :=l N] : B

ρ-reduction: [α¬A]µβ¬A.M⊥ : ⊥ →ρ M⊥[β := α] : ⊥
θ-reduction: µα¬A.[α¬A]MA : A →ρ MA : A provided
α /∈ fv(M)

ε-reduction: µα¬A.µβ¬⊥.M⊥ : A →ε µα
¬A.M⊥

β : A.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

β-reduction: As usual, β-reduction eliminates subsequent
occurrences of →i and →e .

Γ, x : A ⊢ M : B
→i

Γ ⊢ λx .M : A → B Γ ⊢ N : A →e
Γ ⊢ (λx .M)N : B

⇝ Γ ⊢ M[x := N] : B

where the derivation of Γ ⊢ M[x := N] : B is obtained from
that of Γ ⊢ M : B when we exchange all hypotheses x : A with
the derivation Γ ⊢ N : A.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

µ-reduction: Given the declaration α : A → B , we have M : ⊥.
To produce the derivation connected with the contractum of a
µ-reduction, it suffices to start with the declaration α : B and
to replace in M each subterm of the form [α]P by [α](P)N to
obtain a term of type B . At the proof level, µ-reduction
corresponds to the simplification of a reasoning by
contradiction, when an application of a ⊥-elimination is
replaced by ⊥-eliminations of lower type complexity.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

Γ, α : ¬(A → B) ⊢ M : ⊥
⊥e

Γ ⊢ µα.M : A → B Γ ⊢ N : A
→e

Γ ⊢ (µα.M)N : B

⇝ Γ ⊢ µα.M[α :=r N] : B

Locally,

[α¬(A→B)]UA→B ⇝ [α¬B](UA→B)NA

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

µ′-reduction: It is the symmetric counterpart of rule µ. Given
the declaration α : ¬A, we have µα.M : A by an application of
⊥e . If we also have N : A → B , then (N)µα.M : B and
(N)µα.M : B → µα.M[α :=l N]. To obtain the effect of the
rule, it suffices to start with the declaration α : B and to
replace in M each subterm of the form [α]P by [α](N)P .
Here, we observe that there is no direct relation between the
two types associated with α before and after the reduction.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

Γ ⊢ N : A → B

Γ, α : ¬A ⊢ M : ⊥
⊥e

Γ ⊢ µα.M : A
→e

Γ ⊢ (N)µα.M : B

⇝ Γ ⊢ µα.M[α :=l N] : B

Locally,

[α¬A]UA ⇝ [α¬B](NA→B)UA

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

ρ-reduction: If we obtained a derivation of [β]µα.M : ⊥, then,
necessarily, α, β : ¬A for some A. Hence, ρ-reduction can be
interpreted as a simplification of proofs: it is enough to replace
every occurrence of the assumption α : ¬A by the same type
of assumption β : ¬A throughout the derivation.
θ-reduction: Given the declaration α : ¬A, we have M : A,
hence µα.[α]M : A. This term reduces simply to M, provided
that α does not appear free in M.
ε-reduction: Given the declaration α : ¬A and the relation
µα.µβ.M : A, we necessarily have β : ¬⊥. We eliminate µβ as
well as all occurrences of [β] in M to obtain a term of type A.
Hence, ε-rule removes a proof of ⊥ obtained from ⊥ by
contradiction.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

In second order propositional λ-calculus, the Church numerals
λxλf .(f)nx have type N = X → (X → X) → X . The following
statement is true: A (closed) term t is of type N iff t = λxλf .(f)nx
for some n, where (f)0x = x and (f)n+1x = (f)(f)nx .

This is no longer true in the λµ-calculus. For example,

λxλf .µα[α](f)µβ[α](f)µγ[β](f)(f)µβ[γ](f)µγ[β]x

is of type N (and has value 3).

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

The following is true:

Theorem (B; Nour 2022)

Let x , f be two different λ-variables. If ⊢ M : N and
((M)x)f ∈ WN βµµ′ρθε, then ∃ n ∈ N: ((M)x)f ↠βµµ′ρθε (f)

nx .

In particular, to extract the value of a λµ-term of type N , we have
make use of all the reductions βµµ′ρθε.
We will state that βµµ′ρθε-reduction is weakly normalizing, thus
the assumption ((M)x)f ∈ WN βµµ′ρθε can in fact be omitted in
the above corollary.

Péter Battyányi Normalization in the λµµ′-calculus

Reduction rules

Example

Let M = λx .µα.[α]λg .(g)µβ.µγ.[α]λf .(f)x . Let x : X ,
f : X → X , g : X → X , α : ¬((X → X) → X), β : ¬X and
γ : ¬⊥, then ⊢ M : N . Furthermore,

((M)x)f = ((λx .µα.[α]λg .(g)µβ.µγ.[α]λf .(f)x)x)f

→β (µα.[α]λg .(g)µβ.µγ.[α]λf .(f)x)f

→µ µα.[α](λg .(g)µβ.µγ.[α](λf .(f)x)f)f

→β µα.[α](λg .(g)µβ.µγ.[α](f)x)f

→β µα.[α](f)µβ.µγ.[α](f)x

→ε µα.[α](f)µβ.[α](f)x

→µ′ µα.[α]µβ.[α](f)x

→ρ µα.[α](f)x

→θ (f)x .

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

Let us consider βµρτε-reduction, that is, we omit µ′. Let →λµ

denote the union of these reductions.

Theorem (Parigot 1992; Py 1998)

The λµ-calculus without the rule µ′ is confluent. Namely, if M, M1,
M2 are terms such that

M →∗
λµ M1 and M →∗

λµ M2,

then there exists N such that

M1 →∗
λµ N and M2 →∗

λµ N.

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

Subject reduction holds.

Theorem (Parigot 1992; Py 1998)

Let M, N be such that Γ ⊢ M : A and M →∗
λµ N. Then Γ ⊢ N : A.

The calculus is strongly normalizing when we omit µ′-reduction.

Theorem (Parigot 1997; David and Nour 2003)

The λµ-calculus is strongly normalizing.

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

We add the rule µ′ to the reduction: we denote →λµµ′ρτε by →λµµ′

when we emphasize that we consider the totality of the rules.
Otherwise, we simply write → for the reduction involving all the
rules. First of all, we may observe that we do not have confluency
anymore:

(µα.x)µβ.y →µ µα.x and (µα.x)µβ.y →µ′ µβ.y .

Strangely enough, we can even find a term of integer type that
reduces to two different numerals. Namely, let
M = µα.[α](µβ.[α]n)µδ.[α]m. Then ⊢ M : N , and both M →∗ n
and M →∗ m holds.

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

Does the typed (untyped) µµ′-reduction have the SN/WN
property?
Is βµµ′-reduction (extended with some of the simplification
rules) weakly/strongly normalizing?

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

The simply typed µµ̃-calculus is strongly normalizing
(Polonovski 2004)
The untyped µµ′-calculus is strongly normalizing (David; Nour
2007). A proof based on a non-decreasing norm was given in
2019 by Battyányi and Nour.

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties
What happens when we add one or more simplification rules?

Proposition (B 2007)

µµ′ρ-reduction is not strongly normalizing.

Let U = µα.[α][α]x , V = µβ.U and M = (V)U.
The term M can be typed. Let α : ¬⊥ and β : ¬(⊥ → ⊥),
then we have x : ⊥ ⊢ U : ⊥, x : ⊥ ⊢ V : ⊥ → ⊥ and
x : ⊥ ⊢ M : ⊥.
There exists an infinite reduction sequence starting from M.

M = (V)µα.[α][α]x

→µ′ µα.[α](V)[α](V)x

→µ µα.[α](V)[α]µβ.U

→ρ µα.[α](V)U = µα.[α]M

We remark that, when θ-reduction is allowed, the example above
returns the initial µ-term M.

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

Proposition (B 2007)

µµ′ε-reduction is not weakly normalizing.

Let K = µα.[α][α]x , L = µβ.[β](z)[β]y and N = µγ.(L)K . Assume
α : ¬⊥, β : ¬(⊥ → ⊥) and γ : ¬⊥. Then we have x : ⊥ ⊢ K : ⊥,
y : ⊥ → ⊥, z : ⊥ → (⊥ → ⊥) ⊢ L : ⊥ → ⊥ and
x : ⊥, y : ⊥ → ⊥, z : ⊥ → (⊥ → ⊥) ⊢ N : ⊥.

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

The following reduction sequence starting from N will never come
to a halt.

N = µγ.(µβ.[β](z)[β]y)K

→µ µγ.µβ.[β]((z)[β](y)K)K

→ε µγ.((z)(y)K)K

→µ′ µγ.µα.[α]((z)(y)K)[α]((z)(y)K)x

→ε µγ.((z)(y)K)((z)(y)K)x

→µ′ µγ.((z)(y)K)((z)µα.[α](y)[α](y)x)x

→µ′ µγ.((z)(y)K)(µα.[α](z)(y)[α](z)(y)x)x

→µ µγ.((z)(y)K)µα.[α]((z)(y)[α]((z)(y)x)x)x

→µ′ µγ.µα.[α]((z)(y)K)((z)(y)[α]((z)(y)K)((z)(y)x)x)x

→ε µγ.((z)(y)K)((z)(y)((z)(y)K)((z)(y)x)x)x

...

Péter Battyányi Normalization in the λµµ′-calculus

Proof-theoretical properties

Theorem (B; Nour 2022)

The µµ′ρε-rule is weakly normalizing.

The underlying algorithm is constructive and non-deterministic.
There exist terms for which we can obtain normal forms that are
not µµ′ρε-equal.

What if we add the β-rule? Since the above counterexamples can
be typed, weak normalization is the most that can be expected.

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε

Theorem (B; Nour 2022)

βµµ′ρε-reduction is weakly normalizing.

The idea of the algorithm is as follows:
We start from a λµ-term M1 in µµ′ρε-normal form, i.e., from
a λµ-term in which there are no µ-, µ′-, ρ- or ε-redexes.
We eliminate all β-redexes from M1 by applying an arbitrary
weak β-normalization algorithm. Having done this, we arrive at
a λµ-term M2 in β-normal form.
Next, we find a µµ′ρε-normal form M3 of M2 by our weak
normalization algorithm. The λµ-term M3 may contain
β-redexes.
It can be shown, however, that the maximum rank of
β-redexes in M1 is strictly greater than that of M3.

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε: the origin of a µ-redex

Lemma
Let

M1 →β M2≥

(µα¬(A→B).P⊥
1)Q⊥

1

Then either
(µα¬(A→B).P⊥

2)Q⊥
2 ≤ M1

or
(λx .C .PD

2)QC
2 ≤ M1,

where lh(C → D) > lh(A → B).

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε: the origin of a µ-redex

Lemma
Let

M1 →β M2≥
(λxA.PB

1)QA
1

Then
(λxC .PD

2)QC
2 ≤ M1

with lh(C → D) ≥ lh(A → B).

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε: the origin of a µ-redex

Corollary

If M ∈ NFµµ′ρε, M ↠β M ′ and (µα¬(A→B).P⊥
1)QA

1 ≤ M ′, then
(λxC .PD

2)QC
2 ≤ M for some terms P2,Q2 and some types C ,D

where lh(C → D) > lh(A → B).

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε: the origin of a β-redex

Lemma
Let

M1 →µµ′ρε M2≥

(λxA.PB
1)QA

1

Then either
(λxA.PB

2)QA
2 ≤ M1

or
(µα¬(A→B).P⊥

2)Q⊥
2 ≤ M1

such that there exists [α]µβ1 . . . [β1] . . . µβn . . . [βn]λy
A.RB ≤ P⊥

2 .

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε: the origin of a β-redex

Corollary

If M ∈ NFβ , M ↠µµ′ρε N and (λxA.PB
1)QA

1 ≤ N, then
(µα¬(A→B).P⊥

2)QA
2 ≤ M for some terms P2,Q2.

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε

Definition
Let M be a λµ-term.

Let r = (λxA.PB)QA be a β-redex of M. The rank of r in M
is defined by rank(r ,M) = lh(A → B).
The rank of M is
rank(M) = max{rank(r ,M) | r is a β-redex in M}.

Lemma
Let M1,M3 ∈ NFµµ′ρε and M2 ∈ NFβ such that M3 ̸∈ NFβ and
M1 ↠β M2 ↠µµ′ρε M3, then rank(M1) > rank(M3).

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε

Lemma
If M ∈ NFµµ′ρε, then M ∈ WN βµµ′ρε.

Proof.
By induction on rank(M). If M ̸∈ NFβ , then M ↠β M ′ and
M ′ ∈ NFβ for some M ′. If M ′ ̸∈ NFµµ′ρε, then M ′ ↠µµ′ρε M

′′

and M ′′ ∈ NFµµ′ρε. Finally, if M ′′ ̸∈ NFβ , by the previous lemma,
rank(M) > rank(M ′′) and, by IH, M ′′ ∈ WN βµµ′ρε, then
M ∈ WN βµµ′ρε.

Péter Battyányi Normalization in the λµµ′-calculus

Weak normalization of βµµ′ρε

Theorem
In the simply typed λµ-calculus, βµµ′ρε-reduction is weakly
normalizing.

Proof.
Let M be a λµ-term and M ↠µµ′ρε M

′ where M ′ ∈ NFµµ′ρε. By
the above lemma, M ′ ∈ WN βµµ′ρε, hence M ∈ WN βµµ′ρε.

Péter Battyányi Normalization in the λµµ′-calculus

The case of the θ-rule

We can extend our result to the case of θ-reduction. Recall that the
θ-rule looks like as follows:

µα¬A.[α¬A]MA : A →ρ MA : A

provided α /∈ fv(M). We have two lemmas:

Lemma
Let M ∈ NFβµµ′ρε. If M ↠θ M

′, then M ′ ∈ NFβµµ′ρε.

Lemma
Both in the typed and in the untyped λµ-calculus, θ-reduction
strongly normalizes.

Péter Battyányi Normalization in the λµµ′-calculus

The case of the θ-rule

As a consequence, we can state the following theorem:

Theorem
In the simply typed λµ-calculus, βµµ′ρεθ-reduction is weakly
normalizing.

Péter Battyányi Normalization in the λµµ′-calculus

Bibliography

F. Barbanera and S. Berardi. A symmetric lambda calculus for
classical program extraction, In: M. Hagiya and J.C. Mitchell
(editors), Proceedings of theoretical aspects of computer
software, TACS ’94., Lecture Notes in Computer Science (789),
pp. 495-515, Springer Verlag, 1994.

P. Battyányi. Normalization properties of symmetric logical
calculi, PhD thesis, University of Chambéry, 2007.

P. Battyányi and K. Nour. Normalization proofs for the
un-typed µµ′-calculus, Special Issue: LICMA’19 Lebanese
International Conference on Mathematics and Applications.,
AIMS Mathematics, 5(4), pp. 3702-3713, 2020.

Péter Battyányi Normalization in the λµµ′-calculus

Bibliography

P. Battyányi, K. Nour. Normalization in the simply typed
λµµ′ρθε-calculus, Mathematical Structures in Computer
Science. 32(8), pp. 1066-1098, 2022.
https://doi.org/10.1017/S096012952200041X

P.-L. Curien and H. Herbelin. The duality of computation, In:
M. Odersky, P. Wadler (editors), Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional
Programming, ICFP ’00, pp. 233-243, ACM Press, 2000.

R. David, R., K. Nour. A Short Proof of the Strong
Normalization of Classical Natural Deduction with Disjunction,
The Journal of Symbolic Logic, 68(4), pp. 1277-1288, 2003.
http://www.jstor.org/stable/4147762

Péter Battyányi Normalization in the λµµ′-calculus

https://doi.org/10.1017/S096012952200041X
http://www.jstor.org/stable/4147762

Bibliography

R. David and K. Nour. Arithmetical proofs of strong
normalization results for symmetric lambda calculi,
Fundamenta Informaticae, 77(4), pp. 489-510, 2007.

J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types,
Cambridge University Press, 1989.

T. Griffin. A formulae-as-type notion of control, In: F. E. Allen
(editor), Conference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, POPL
’90, ACM Press, 1990.

P. de Groote. An environment machine for the λµ-calculus,
Mathematical Structures in Computer Science 8, pp. 637-669,
1998.

Péter Battyányi Normalization in the λµµ′-calculus

Bibliography

J.-L. Krivine. Lambda-calculus types and models, Ellis
Horwood, 1993.

J.-L. Krivine. Classical logic, storage operators and 2nd order
lambda-calculus, Annals of Pure and Applied Logic 68, pp.
53-78, 1994.

C. R. Murthy. An evaluation semantics for classical proofs, In:
Proceedings of the sixth annual IEEE symposium on logic in
computer science, pp. 96-107, 1991.

K. Nour. La valeur d’un entier classique en λµ-calcul, Archive
for Mathematical Logic 36, pp. 461-473, 1997.

Péter Battyányi Normalization in the λµµ′-calculus

Bibliography

M. Parigot. λµ-calculus: an algorithmic interpretation of
classical natural deduction, In: A. Voronkov (editor), Logic
Programming and Automated Reasoning, Lecture Notes in
Computer Science (624), Springer Verlag, Berlin, pp. 190-201,
1992.

M. Parigot. Proofs of strong normalization for second order
classical natural deduction, Journal of Symbolic Logic (62), pp.
1461-1479, 1997.

W. Py. Confluence en λµ-calcul, PhD thesis, University of
Chambéry, 1998.

N. J. Rehof and M. H. Sørensen. The λ∆-calculus, In: M.
Hagiya, J. C. Mitchell (editors), Theoretical Aspects of
Computer Software, Lecture Notes in Computer Science (789),
pp. 516-542, Springer Verlag, 1994.

Péter Battyányi Normalization in the λµµ′-calculus

Bibliography

A. Saurin. On the Relations between the Syntactic Theories of
λµ-calculi, In: M. Kaminski, S. Martini (editors), 17th EACSL
Annual Conference on Computer Science Logic, Lecture Notes
in Computer Science (5213), pp. 154-168, Springer Verlag,
2008.

M. H. Sørensen and P. Urzyczyn Lectures on the Curry-Howard
Isomorphism, Elsevier Science, 2006.

P. Wadler. Call-by-value is dual to call-by-name, In: C.
Runciman, O. Shivers (editors), Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional
Programming, ICFP ’03, pp. 189-201, 2003.

Péter Battyányi Normalization in the λµµ′-calculus

