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Introduction

Let A, B are arbitrary formulas, then the implicational fragment of
the intuitionistic propositional calculus is defined as follows:

ax

AFB N rFA—-B TFA
r-A—B r-B8
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Introduction

Derivations are written in the form of a proof tree. For example,

A BFA
A-B— A
FA— (B— A)

i

Or,

rFA-(B—=C) TFA TFASB TEA
-

e _>e

N=B8—C N-B
N=¢C

%ey

where ' = {A— (B — C),A— B,A}.
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Introduction

The A-terms are defined by the following grammar:
A=V | (AV.A) | (AA,
where V = {x,y, z,...} are the set of variables.

We adopt Krivine's notation, hence (M)N stands for the
application of N to M. Moreover, we use the abbreviation
(Ml)/\/lz ... M,_1 M, for the term ( .. (Ml)/\/’g) .. .)M,,,l)/\/ln.
Observe that (M)NP and (M)(N)P denote different terms.
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Introduction

Given an abstraction of the form Ax.M, we say that the outermost
prefix Ax binds the free occurrences of x in M. All the variable
occurrences that are not bound are said to be free. The set of free
variables of M is denoted by fv(M). To avoid the capture of free
variables, we accept the Barendregt convention for the term
notation: we identify terms that only differ in the names of bound
variables.
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Introduction

The types are built from a set Vr of atomic types with the
connective —. The type formation rules are the following.

T = Vr | T>T
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Introduction

Let I' denote a (possibly empty) context, that is, a finite set of
declarations of the form x : A. If [ is a context, let
I ={A|x:AecT for some x}. The typing rules are as follows.

MNMx:AFx: A

Mx:AFM:B [FM:A>B THN:A
MEA.M:A— B M- (M)N:B

The A-term M is called typable with type A, if T = M : As
derivable using the rules and axioms.
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Introduction

LetMT'={x:A—>(B—C),y:A— B, z: A}. Then,

rN-x:A-(B—-C) TFz:A TrFy:A—-B TFz:A
N-(x)z:B—C N=(y)z: B
ME((x)2)(y)z: C
x: A= (B—=C),y: A—>B|—)\z((x) )(y)z:A—=C
x: A= (B—= CO)FAyz((x)2)(y)z: (A— B) = (A— ()
FAxyz.((x)z)(y)z: (A— (B — C)) — ((A —B) = (A= (0))
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Introduction

When we omit the indications of the terms, we obtain a correct
derivation of the end formula.

MNFA—-(B—C) |[IIFA |IITFA—=B |lFA
N+B—C Il +B
Il FC
A—-(B—C),A—-BFA-=C
A-(B—-CFA—-B)—= (A= ()
FA—=(B—-C)—({(A—B)— (A= 0))
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Introduction

This phenomenon is referred to as the Curry—Howard isomorphism
and was first observed by Curry in the 1930s and (re)discovered by
Howard in 1968.

It was widely believed that the Curry—Howard isomorphism is valid
only for intuitionistic logic, until Griffin and Murthy discovered in
the 1990s that certain terms expressing control can be given the
type -——A — A.
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Introduction

From that point on, several calculi realizing the Curry-Howard
isomorphism for classical logic have been discovered. For example,

@ Rehof and Sorensen’s Aa,

o Curien and Herbelin's Apji,

o Krivine's \C,

@ Berardi and Barbanera's \*,

@ Parigot's Au.
In what follows, we look at Parigot's simply typed Au-calculus in
more detail.
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Definitions and notation

e Let V\ ={x,y,z,...} denote a set of A\-variables and
V,={a,B,7,...} denote a set of p-variables, respectively.
The Ap-term formation rules are the following.

T =WV | \WWT | (MT | VAT | wVu.T

@ In a A\u-term, the A and i operators bind the variables in their
scope. We consider terms modulo the equivalence relation,
which allows to rename the variables bound by a A- or a
p-abstraction.
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Definitions and notation

We are concerned with the Au-calculus as modified by de Groote.
Parigot's original definition was different but had certain
shortcomings: although the calculus was strongly normalizing
(Parigot), some closed formulas did not admit an assumptionless
derivation in the calculus. More importantly, Béhm's theorem did
not hold for the calculus (David and Py). These drawbacks were
eliminated in de Groote's version (Saurin), at the price of sacrificing
strong normalization.
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Definitions and notation

The types are built from a set Vr of atomic types and the constant
L with the connectives = and —. The type formation rules are the

following.
T = VuU{l} | =T | T>T

In the definition below I' denotes a (possibly empty) context, that
is, a finite set of declarations of the form x : A (resp. o : —A) for a
A-variable x (resp. a p-variable «) and type A such that a
A-variable x (resp. a p-variable o) occurs at most once in an
expression x : A (resp. « : =A) of I'. We also write —=A for A — L.
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Definitions and notation

The typing rules are as follows.

—— ax
Mx:AFx: A

Nx:AFM:B N rmMm:A—-B TFN:A

rFAM:A—B M= (MN:B ‘
MNa:-AFM:A N Na:-AFM: L
Na:—-AF[a]M: L I N paM: A ©
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Definitions and notation

Below, let ' ={x: =B — —A,y: A z: B, a: =B} and
M=rT\{z:B}. Then

Fz:B
Ne-la]z: L
ME Az [o]z: =B
ME(x)Azfa]z:-A T'Fy:A
ME((x)Az.[a)z)y : L
x:2B = —A y: AF pa((x)Az.]a)z)y : B
x:=B = 2AF Ay.po((x)A\z.[a]z)y : A— B
F Axy.pa.((x)Az.[a]z)y : (-B — —A) = (A — B)
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Definitions and notation

If we omit the terms annotating the type formulas, we obtain a full
fledged proof of (=B — —A) — (A — B).

r =80 ri+-83

M+ L
/ (4) / (1)
M| - -B — -A M+~ -B
M- —A ™) = AG)
ML
2
-B—-AAFB @)
(3)

-B—-AFA— B
F(-B — -A) = (A— B)

(4)
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Reduction rules

We use several types of substitution in the Au-calculus.

@ [-substitution: M[x := N] is obtained from M by exchanging
the free occurrences of x in M with N. Throughout our
discussion we assume that bound variables are renamed when
necessary.

@ u-substitution: M[a :=, N] is obtained from M when we
replace all subterm occurrences [a|U of M by [a](U)N
recursively.

@ /-substitution: M[a :=; N] is obtained from M when we
replace all subterm occurrences [a|U of M by [a](N)U in a
recursive manner.

@ p-substitution: M[a := f3] is obtained from M by replacing the
free occurrences of o in M by 8

The notation M,, stands for the erasure of every occurrence of [¢]
from M.
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Reduction rules

With this in hand, we are able to define the reduction rules.
o p-reduction: (\xA.MB)NA: B —5 MB[x:= N]: B
@ u-reduction:
(pa~A=B) MHYNA B = a8 M=, N]: B
@ ;/-reduction:
(NA~Bua~A ML+ : B — pa™B.M+a =/ N]: B
o p-reduction: [a " AluB™AML : L —, MH[B:=a]: L
o O-reduction: pa~A.[aAIMA : A —, MA : A provided
a ¢ fv(M)
o e-reduction: pa A B ML A =, MOFA.Mﬁl DA
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Reduction rules

@ [-reduction: As usual, S-reduction eliminates subsequent
occurrences of —; and —..

Nx:AFM:B .
r-MM:A—-B rl—N:A_)wrl—l\/l[x::N]:B
M- (Ax.M)N: B ‘

where the derivation of ' = M[x := N] : B is obtained from
that of ' = M : B when we exchange all hypotheses x : A with
the derivation ' = N : A.
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Reduction rules

@ p-reduction: Given the declaration o : A — B, we have M : L.
To produce the derivation connected with the contractum of a
u-reduction, it suffices to start with the declaration o : B and
to replace in M each subterm of the form [a]|P by [a](P)N to
obtain a term of type B. At the proof level, u-reduction
corresponds to the simplification of a reasoning by
contradiction, when an application of a L-elimination is
replaced by L-eliminations of lower type complexity.
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Reduction rules

Na:-(A—=B)FM: L
N-paM:A— B ‘ Fl—N:A_>~=>I'|—,ua.M[a::,N]:B
M+ (pa.M)N : B ‘

Locally,

[aﬂ(A—>B)]UA—>B —~ [aﬂB](UA%B)NA
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Reduction rules

@ s/-reduction: It is the symmetric counterpart of rule p. Given
the declaration a : —A, we have ua.M : A by an application of
Le. If we also have N : A — B, then (N)ua.M : B and
(N)pa.M : B — pa.M[a:=; N]. To obtain the effect of the
rule, it suffices to start with the declaration « : B and to
replace in M each subterm of the form [a]P by [«](N)P.
Here, we observe that there is no direct relation between the
two types associated with « before and after the reduction.
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Reduction rules

MNa:-AFM: L N
r-N:A—B ﬂ—ua./\/l:A_)ewrl—ua.M[a::,N]:B
M- (N)pa.M: B ‘

Locally,

[a—\A] UA ~ [a_'B](NA—}B) UA
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Reduction rules

@ p-reduction: If we obtained a derivation of []ua.M : L, then,
necessarily, «, 3 : —A for some A. Hence, p-reduction can be
interpreted as a simplification of proofs: it is enough to replace
every occurrence of the assumption « : =A by the same type
of assumption 3 : =A throughout the derivation.

@ O-reduction: Given the declaration a : = A, we have M : A,
hence pa.[a]M : A. This term reduces simply to M, provided
that « does not appear free in M.

@ c-reduction: Given the declaration o : —A and the relation
pnopuB.M = A, we necessarily have 8 : —L. We eliminate uf as
well as all occurrences of [3] in M to obtain a term of type A.
Hence, e-rule removes a proof of L obtained from L by
contradiction.
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Reduction rules

In second order propositional A-calculus, the Church numerals
AXAF.(F)"x have type N = X — (X — X) — X. The following
statement is true: A (closed) term t is of type N iff t = AxAf.(f)"x
for some n, where (f)°x = x and (f)™1x = (f)(f)"x.

This is no longer true in the Ap-calculus. For example,

M. pae] (F) pBla] (£ [BI(F)(F) BV (F)uv[B]x

is of type N ( and has value 3).
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Reduction rules

The following is true:

Theorem (B; Nour 2022)

Let x, f be two different \-variables. If = M : N and
((M)X)f S WN,BMM’P‘%' then 3n € N: ((M)X)f — B/ phe (f)”x.

In particular, to extract the value of a A\u-term of type A/, we have
make use of all the reductions S’ pbe.

We will state that Suu’pfe-reduction is weakly normalizing, thus
the assumption ((M)x)f € WN g,/ p9- can in fact be omitted in
the above corollary.
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Reduction rules

Let M = Ax.pa.[a]rg.(g)uB.py.[o]Af.(F)x. Let x : X,
f X=X g: X=X, a:~((X—X)—=X),5:-X and
v : =1, then = M : N. Furthermore,

(M)x)f =
—B
—u
—B

(Ax.por[]Ag () uB-py-[AF.(F)x)x)f
(pelalrg . (g)pB.-py-[a)Mf.(F)x)f

pe.[a](Ag.(g)uB-pry-[](Af.(F)x)F)f
pe.[a](Ag-(g)pB-py-[e](F)x)f
pee[a](F)pB.py.[e](F)x
pee[e](F)pB.[a](F)x
pa.[a]pp.[a] (f)x

pa[o](F)x




Proof-theoretical properties

Let us consider Spupre-reduction, that is, we omit /. Let —y,
denote the union of these reductions.

Theorem (Parigot 1992; Py 1998)

The \p-calculus without the rule i/ is confluent. Namely, if M, My,
M, are terms such that

M —)iu Ml and M —)iu M2,

then there exists N such that

My _>§\N N and M, —);u N.
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Proof-theoretical properties

Subject reduction holds.

Theorem (Parigot 1992; Py 1998)
Let M, N be such thatFl—/\/l:Aandl\/l—)iﬂ N. ThenT - N : A.

The calculus is strongly normalizing when we omit /-reduction.

Theorem (Parigot 1997; David and Nour 2003)

The Ap-calculus is strongly normalizing.
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Proof-theoretical properties

We add the rule p to the reduction: we denote — ;7 pre by =0
when we emphasize that we consider the totality of the rules.
Otherwise, we simply write — for the reduction involving all the

rules. First of all, we may observe that we do not have confluency
anymore:

(pax)pB.y =, pox and (pox)uf.y = pB.y.

Strangely enough, we can even find a term of integer type that
reduces to two different numerals. Namely, let

M = paa](pf.-[a]n)uo.Jalm. Then = M : N, and both M —* n
and M —* m holds.
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Proof-theoretical properties

@ Does the typed (untyped) pu/-reduction have the SN/WN
property?

@ Is Bup/-reduction (extended with some of the simplification
rules) weakly/strongly normalizing?
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Proof-theoretical properties

@ The simply typed pji-calculus is strongly normalizing
(Polonovski 2004)

@ The untyped pp/'-calculus is strongly normalizing (David; Nour
2007). A proof based on a non-decreasing norm was given in
2019 by Battyanyi and Nour.
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Proof-theoretical properties

What happens when we add one or more simplification rules?

Proposition (B 2007)

it p-reduction is not strongly normalizing.

Let U = pa.fa][a]x, V = pB.U and M = (V)U.

@ The term M can be typed. Let a«: =L and 3 : =(L — 1),
thenwe have x: L FU: L1, x: 1L FV:1l — 1 and
x:1LFEM: L.

@ There exists an infinite reduction sequence starting from M.

M = (V)uefolalx
wo poce](V)[e](V)x
0 nefal(V)[aluB.
—,  pofa](V)U = pafa]lM
We remark that, when #-reduction is allowed, the example above
returns the initial p-term M.

Péter Battyanyi Normalization in the Ay pu’-calculus



Proof-theoretical properties

Proposition (B 2007)

wpt'e-reduction is not weakly normalizing.

Let K = pa.fa]a]x, L = uB.[B](z)[B]y and N = pvy.(L)K. Assume
a:-Ll,f:=(L— L)and y:—L. Then we have x : L - K : L,
y:l—-1lz:1—»(L—>1)FL:1L— 1 and
x:lyy:l—-1lz:1l—-(L—=1)FN:L
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Proof-theoretical properties

The following reduction sequence starting from N will never come
to a halt.

N

= py-(uB.[81(2)[Bly)K

= py-pB-[Bl((2)[Bl(y)K)K

— w-((2)(Y)K)K

= py-pes[e]((2)(v) K) o] ((2) () K)x

= (2 V)K)(2) () K)x

= 1y-((2) () K)((2)pe-[a] (y)[a] (v ) x)x

= w-((2) (V) K) (pee[a](2)(y)[e](2) (y)x)x

—u 1y ((2) () K)pa-[e]((2)(y)[a]((2)(y)x)x)x

= py-poc[a]((2) () K)((2) ()] ((2) (v) K) ((2) (y)x)x)x
1y-((2) (V) K)((2) () ((2) (V) K)((2)(v)x)x)x




Proof-theoretical properties

Theorem (B; Nour 2022)

The pp pe-rule is weakly normalizing.

The underlying algorithm is constructive and non-deterministic.
There exist terms for which we can obtain normal forms that are
not puu pe-equal.

What if we add the S-rule? Since the above counterexamples can
be typed, weak normalization is the most that can be expected.
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Weak normalization of S’ pe

Theorem (B; Nour 2022)

Bup' pe-reduction is weakly normalizing.

The idea of the algorithm is as follows:

o We start from a Au-term My in pp’pe-normal form, i.e., from
a Au-term in which there are no u-, p'-, p- or e-redexes.

@ We eliminate all S-redexes from Mj by applying an arbitrary
weak [S-normalization algorithm. Having done this, we arrive at
a A\u-term M, in 3-normal form.

@ Next, we find a up/pe-normal form M3 of M, by our weak
normalization algorithm. The Au-term M3 may contain
[-redexes.

@ It can be shown, however, that the maximum rank of
[-redexes in My is strictly greater than that of Mj3.
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Weak normalization of Suu/pe: the origin of a u-redex

Let
M —B Mo
[V
(ua~=8). P Q;
Then either
(na~=BPH)Qy < My
or
()\X.C.PzD)Q2C < My,
where |h(C — D) > |h(A — B).
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Weak normalization of Suu/pe: the origin of a u-redex

Let
Ml — M2
[V
(AxA.PEYQR
Then
()\xC.PéJ) 2C < M
with 1h(C — D) > Ih(A — B).
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Weak normalization of Suu/pe: the origin of a u-redex

fMeNFupe M—gM and (,qu(AHB).Pll)Qf‘ < M', then
(AxC.PPYQS < M for some terms Py, Q; and some types C, D
where 1h(C — D) > 1h(A — B).
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Weak normalization of Suu/pe: the origin of a 3-redex

Let
My g’ pe M
vV
(AA.PE) QY
Then either
MAPE)QY < My
or
(na~ABLPI)QF < M
such that there exists [a]uB1 ... [B1] ... B .. [Ba]\yA.RE < Ps-.
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Weak normalization of Suu/pe: the origin of a 3-redex

If M e NFg, M 0, N and (AxA.PE)Q{ < N, then
(,uaﬁ(A_’B).P;)QQA < M for some terms P>, Q>.
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Weak normalization of S’ pe

Let M be a Au-term.
o Let r = (Ax*.PB)QA be a S-redex of M. The rank of r in M
is defined by rank(r, M) = lh(A — B).
@ The rank of M is
rank(M) = max{rank(r, M) | r is a S-redex in M}.

Let My, M3 € NF 5. and Mo € N Fg such that M3 ¢ N and
M —>3 Mo = ! pe Ms, then rank(Ml) > rank(/\/l3).
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Weak normalization of S’ pe
If M e N-Fu,u’ps: then M € WN@M,/pe.

By induction on rank(M). If M ¢ N'F, then M —5 M’ and
M' € NFg for some M'. If M &€ NF,,pc, then M — 1,0 M"
and M" € NF,pe. Finally, if M" & N Fg, by the previous lemma,
rank(M) > rank(M") and, by IH, M” € WN ,,,1/pe, then
M e WNBuu’ps-

Ol
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Weak normalization of S’ pe

In the simply typed Au-calculus, B’ pe-reduction is weakly
normalizing.

v
Let M be a Ap-term and M — 7, M" where M" € N'F . By
the above lemma, M" € WA g, pc, hence M € WN g1 e O

v
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The case of the f-rule

We can extend our result to the case of #-reduction. Recall that the
O-rule looks like as follows:

pa”Ala A IMA A =, MA A

provided o ¢ fv(M). We have two lemmas:

Let M € N‘Fﬂuu’pi' If M —y M', then M’ € N]:/BMM'IJE'

Both in the typed and in the untyped Ap-calculus, 6-reduction
strongly normalizes.
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The case of the f-rule

As a consequence, we can state the following theorem:

In the simply typed Au-calculus, B pef-reduction is weakly
normalizing.
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