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The talk is based on joint work with

Miodrag Djuki¢, lvan Kastelan, Miroslav Popovi¢, Marko Popovi¢, lvan Proki¢, Simona Proki¢
(U. Novi Sad), Alceste Scalas (TU Copenhagen) and Nobuko Yoshida) (U. Oxford).
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Federated Learning + Formal Verification

e Federated learning (FL) — decentralised machine learning setting where clients

o keep training data decentralised (private data) while
o collaboratively train a model (local data)

e Formal verification (FV) — a process of mathematically checking that the behaviour of a
system satisfies a given property

Sounds great but there was zero previous work to build upon X

777

To build a common language of the two working communities . .
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Roadmap

@ Federated Learning: Distributed machine learning

© Verification: Untyped calculus and model checking

© Verification: Typed calculus and correctness-by-construction
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Outline

@ Federated Learning: Distributed machine learning
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FL Centralised - star topology

@ The algorithm goes in 3 phases
where:
o local data is the local machine
learning model
e private data is training data
@ At this point our focus was on
the communication pattern:
e broadcasting
e receiving from clients in any
order!

Phase 1:
Server broadcasts
its local data

Phase 2:
Server receives
clients’ updates

Phase 3:
Server calls its
callback function
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FL Decentralised - clique topology

@ The algorithm goes in 3 phases
where:
o local data is local machine
learning model
e private data is training data
@ At this point our focus was on
the communication pattern:
e broadcasting
e receiving from clients in any
order!

Phase 1:

Initial broadcast
(nodes act as
servers)

Phase 2:
Sending updates
(nodes act as
clients)

Phase 3:
Aggregating
updates (nodes
act as servers)
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PTB-FLA

@ Python Testbed for Federated Learning Algorithms (PTB-FLA)

@ The primary intention is to use PTB-FLA as a framework for developing federated
learning algorithms on small smart devices (swarm, edge computing)

@ PTB-FLA supports both
o the generic centralised one-shot FLA execution
o the generic decentralised one-shot FLA execution

@ Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A simple python testbed for
federated learning algorithms. In: ZINC 2023. pp. 148-153 (2023).
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Outline

© Verification: Untyped calculus and model checking
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Untyped calculus and model checker

@ Calculus: Communicating Sequential Processes (CSP)

e Formal language for describing patterns of interaction in concurrent systems
o Introduced in the late 1970s by Tony Hoare

@ Model checker: Process Analysis Toolkit (PAT)

@ Other process calculi: Calculus of Communicating Systems (CCS), m-calculus
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Formal verification of FL protocols

@ Specification: FL protocols are modelled in CSP

@ Verification: PAT model checker is used to prove

e deadlock freedom and
e termination

of the two CSP models (top down)
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CSP Model for Generic Centralised

FLA Algorithm

1 // PTB-FLA

2

3 channel server2client[NoNodes-1] 1;

4 channel clients2server NoNodes-1;

5

6 FlCentralised(noNodes, nodeId, flSrvId, ldata, pdata) =
7 if (nodeId == F1SrvId) {

8 CeServer (noNodes, nodeId, f1SrvId, ldata, pdata)
9 } else {

10 CeClient (noNodes, nodeId, fl1SrvId, ldata, pdata)
11 s

12

13 CeServer (noNodes, nodeId, f1SrvId, ldata, pdata) =
14 {terminated = False} ->

15 CeBroadcastMsg (0, noNodes, nodeld, ldata);

16 CeRcvMsgs (0, noNodes-1);

17 {terminated = True} -> Skip;

18

19 CeBroadcastMsg(id, noNodes, nodeld, ldata) =

20 if (id !'= nodeld) {

21 server2client [id]!1ldata -> Skip

22 };

23 if (id < noNodes-1) {

24 CeBroadcastMsg(id+1, noNodes, nodeId, ldata)

25 s

26

27 | CeRcvMsgs (i, noMsgs) =

28 if (i < noMsgs) {

29 clients2server?update -> CeRcvMsgs(i+1, noMsgs)

30 i |
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Model checking with PAT

Centralised

B N

####assert
####define
####assert
####assert

SysCentralised () deadlockfree;
Terminated (terminated == True);
SysCentralised() reaches Terminated;
SysCentralised () |= []<> Terminated;
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o CSP models generated manually from the Python code

@ I. Proki¢, S. Ghilezan, S. Proki¢, M. Popovic, M. Popovic, |. Kastelan. Correct orchestration
of Federated Learning generic algorithms: formalisation and verification in CSP
ECBS 2023 - Engineering of Computer-Based Systems LNCS 14390, 274-288 (2023)

@ CSP models generated atitematically from the Python code

@ M. Djukic, I. Prokic, M. Popovic, S. Ghilezan, M. Popovic, S. Prokic. Correct orchestration of
federated learning generic algorithms: Pyton translation to CSP and verification in PAT.
International Journal on Software Tools and Technology Transfer 27(1), 21-34 (2025).
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Outline

© Verification: Typed calculus and correctness-by-construction
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Multiparty session types (MPST)

Typed calculus: Multiparty session types (MPST)

o m-calculus like formal language for the verification of message-passing programs
o Introduced by Honda, Yoshida, Carbone (2008,2016)

MPST express protocols-as-types and use type checking to verify whether one or more
communicating processes correctly implement some desired protocols

MPST enjoy (guarantee) safety, deadlock-freedom, liveness and other good
communication properties

Corectness-by-construction
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MPST

Process calculi | m-calculus, CCS, CSP,... Process

Session types | 2 participants communication | !p-send ?g-receive

MPST multiple participants rlp.?q..., p<als.?r....

Subtyping enables flexibility reconfiguration of communication
Advantages

@ Subject reduction

© Progress Disadvantages

o Liveness e insufficient to model

@ Deadlock freedom

arbitrary order of message arrivals

Different extensions for real-life
problems
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MPST for FL

@ extension of MPST, specially for this purpose
@ as a novelty, MPST supports

@ the extension is proven to enjoy safety, deadlock-freedom, liveness, and session fidelity
properties
@ FL algorithms are modelled in MPSTs

@ this approach paves the way for more scalable and efficient techniques for verification and
analysis of distributed machine learning algorithms based on correctness-by-construction.

[@ 1. Proki¢, S. Proki¢, S. Ghilezan, A. Scalas, N. Yoshida. On Asynchronous Multiparty Session Types
for Federated Learning. ICTAC 2025.
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Conclusion and further work

Done

@ to automatise the translation of
the Python code into the CSP
model

@ to develop MPST for FL

Further investigations
e to verify PTB-FLA CSP models in Maude

@ to identify and prove more properties
relevant to FL

@ Curry-Howard correspondence paradigm
new challenges
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