
Logical foundations for correct communication of distributed
machine learning

Silvia Ghilezan

University of Novi Sad & Mathematical Institute SASA

LAP 2025
IUC, Dubrovnik

24-28 September 2025

1 / 20

The talk is based on joint work with

Miodrag Djukić, Ivan Kaštelan, Miroslav Popović, Marko Popović, Ivan Prokić, Simona Prokić
(U. Novi Sad), Alceste Scalas (TU Copenhagen) and Nobuko Yoshida) (U. Oxford).

2 / 20

Federated Learning + Formal Verification

Federated learning (FL) – decentralised machine learning setting where clients
keep training data decentralised (private data) while
collaboratively train a model (local data)

Formal verification (FV) – a process of mathematically checking that the behaviour of a
system satisfies a given property

Sounds great ✓ but there was zero previous work to build upon ✗

To build a common language of the two working communities ??

3 / 20

Roadmap

1 Federated Learning: Distributed machine learning

2 Verification: Untyped calculus and model checking

3 Verification: Typed calculus and correctness-by-construction

4 / 20

Outline

1 Federated Learning: Distributed machine learning

2 Verification: Untyped calculus and model checking

3 Verification: Typed calculus and correctness-by-construction

5 / 20

FL Centralised - star topology

The algorithm goes in 3 phases
where:

local data is the local machine
learning model
private data is training data

At this point our focus was on
the communication pattern:

broadcasting
receiving from clients in any
order!

ana1 ai.

. . .

. . .

Phase 1:
Server broadcasts
its local data

Phase 2:
Server receives
clients’ updates

Clients call their
callback function

Phase 3:
Server calls its
callback function

6 / 20

FL Decentralised - clique topology

The algorithm goes in 3 phases
where:

local data is local machine
learning model
private data is training data

At this point our focus was on
the communication pattern:

broadcasting
receiving from clients in any
order!

ana1 ai.

Phase 1:
Initial broadcast
(nodes act as
servers)

Phase 2:
Sending updates
(nodes act as
clients)

Phase 3:
Aggregating
updates (nodes
act as servers)

Note: the term “update” in the messages
above means “update data”.

7 / 20

PTB-FLA

Python Testbed for Federated Learning Algorithms (PTB-FLA)

The primary intention is to use PTB-FLA as a framework for developing federated
learning algorithms on small smart devices (swarm, edge computing)

PTB-FLA supports both
the generic centralised one-shot FLA execution
the generic decentralised one-shot FLA execution

Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A simple python testbed for
federated learning algorithms. In: ZINC 2023. pp. 148-153 (2023).

8 / 20

Outline

1 Federated Learning: Distributed machine learning

2 Verification: Untyped calculus and model checking

3 Verification: Typed calculus and correctness-by-construction

9 / 20

Untyped calculus and model checker

Calculus: Communicating Sequential Processes (CSP)
Formal language for describing patterns of interaction in concurrent systems
Introduced in the late 1970s by Tony Hoare

Model checker: Process Analysis Toolkit (PAT)

Other process calculi: Calculus of Communicating Systems (CCS), π-calculus

10 / 20

Formal verification of FL protocols

Specification: FL protocols are modelled in CSP

Verification: PAT model checker is used to prove
deadlock freedom and
termination

of the two CSP models (top down)

11 / 20

CSP Model for Generic Centralised FLA Algorithm

1 // PTB -FLA
2 ...
3 channel server2client[NoNodes -1] 1;
4 channel clients2server NoNodes -1;
5
6 FlCentralised(noNodes , nodeId , flSrvId , ldata , pdata) =
7 if(nodeId == FlSrvId) {
8 CeServer(noNodes , nodeId , flSrvId , ldata , pdata)
9 } else {

10 CeClient(noNodes , nodeId , flSrvId , ldata , pdata)
11 };
12
13 CeServer(noNodes , nodeId , flSrvId , ldata , pdata) =
14 {terminated = False} ->
15 CeBroadcastMsg (0, noNodes , nodeId , ldata);
16 CeRcvMsgs(0, noNodes -1);
17 {terminated = True} -> Skip;
18
19 CeBroadcastMsg(id, noNodes , nodeId , ldata) =
20 if(id != nodeId) {
21 server2client[id]!ldata -> Skip
22 };
23 if(id < noNodes -1) {
24 CeBroadcastMsg(id+1, noNodes , nodeId , ldata)
25 };
26
27 CeRcvMsgs(i, noMsgs) =
28 if(i < noMsgs) {
29 clients2server?update -> CeRcvMsgs(i+1, noMsgs)
30 };
31 ... 12 / 20

Model checking with PAT

Centralised
1 #### assert SysCentralised () deadlockfree;
2 #### define Terminated (terminated == True);
3 #### assert SysCentralised () reaches Terminated;
4 #### assert SysCentralised () |= []<> Terminated;

13 / 20

CSP models generated manually from the Python code

I. Prokić, S. Ghilezan, S. Prokić, M. Popovic, M. Popovic, I. Kaštelan. Correct orchestration
of Federated Learning generic algorithms: formalisation and verification in CSP
ECBS 2023 - Engineering of Computer-Based Systems LNCS 14390, 274–288 (2023)

CSP models generated automatically from the Python code

M. Djukic, I. Prokic, M. Popovic, S. Ghilezan, M. Popovic, S. Prokic. Correct orchestration of
federated learning generic algorithms: Pyton translation to CSP and verification in PAT.
International Journal on Software Tools and Technology Transfer 27(1), 21-34 (2025).

14 / 20

Outline

1 Federated Learning: Distributed machine learning

2 Verification: Untyped calculus and model checking

3 Verification: Typed calculus and correctness-by-construction

15 / 20

Multiparty session types (MPST)

Typed calculus: Multiparty session types (MPST)
π-calculus like formal language for the verification of message-passing programs
Introduced by Honda, Yoshida, Carbone (2008,2016)

MPST express protocols-as-types and use type checking to verify whether one or more
communicating processes correctly implement some desired protocols

MPST enjoy (guarantee) safety, deadlock-freedom, liveness and other good
communication properties

Corectness-by-construction

16 / 20

MPST

Process calculi π-calculus, CCS, CSP,... Process
Session types 2 participants communication !p-send ?q-receive
MPST multiple participants r�!p.?q..., p�!s.?r

Subtyping enables flexibility reconfiguration of communication

Advantages
Subject reduction
Progress
Liveness
Deadlock freedom

Different extensions for real-life
problems

Disadvantages
insufficient to model
arbitrary order of message arrivals

17 / 20

MPST for FL

extension of MPST, specially for this purpose
as a novelty, MPST supports
input/output operations directed towards multiple participants at the same time
the extension is proven to enjoy safety, deadlock-freedom, liveness, and session fidelity
properties
FL algorithms are modelled in MPSTs
this approach paves the way for more scalable and efficient techniques for verification and
analysis of distributed machine learning algorithms based on correctness-by-construction.

I. Prokić, S. Prokić, S. Ghilezan, A. Scalas, N. Yoshida. On Asynchronous Multiparty Session Types
for Federated Learning. ICTAC 2025.

18 / 20

Conclusion and further work

Done
to automatise the translation of
the Python code into the CSP
model
to develop MPST for FL

Further investigations
to verify PTB-FLA CSP models in Maude

to identify and prove more properties
relevant to FL

Curry-Howard correspondence paradigm
new challenges

19 / 20

6G-
NTN

PROJECT-
TARDIS.EU

Trustworthy and
Resilient

Decentralised
Intelligence for

Edge
Systems

www.project-tardis.eu EU’s Horizont Europe

20 / 20

	Federated Learning: Distributed machine learning
	Verification: Untyped calculus and model checking
	Verification: Typed calculus and correctness-by-construction

