Logical foundations for correct communication of distributed
machine learning

Silvia Ghilezan

University of Novi Sad & Mathematical Institute SASA

LAP 2025
IUC, Dubrovnik
24-28 September 2025

— 1720

The talk is based on joint work with

Miodrag Djuki¢, lvan Kastelan, Miroslav Popovi¢, Marko Popovi¢, lvan Proki¢, Simona Proki¢
(U. Novi Sad), Alceste Scalas (TU Copenhagen) and Nobuko Yoshida) (U. Oxford).

e 2/20

Federated Learning + Formal Verification

e Federated learning (FL) — decentralised machine learning setting where clients

o keep training data decentralised (private data) while
o collaboratively train a model (local data)

e Formal verification (FV) — a process of mathematically checking that the behaviour of a
system satisfies a given property

Sounds great but there was zero previous work to build upon X

777

To build a common language of the two working communities . .

e 3/20

Roadmap

@ Federated Learning: Distributed machine learning

© Verification: Untyped calculus and model checking

© Verification: Typed calculus and correctness-by-construction

e 4/20

Outline

@ Federated Learning: Distributed machine learning

e 5/20

FL Centralised - star topology

@ The algorithm goes in 3 phases
where:
o local data is the local machine
learning model
e private data is training data
@ At this point our focus was on
the communication pattern:
e broadcasting
e receiving from clients in any
order!

Phase 1:
Server broadcasts
its local data

Phase 2:
Server receives
clients’ updates

Phase 3:
Server calls its
callback function

| 31local data—_,)|
a

le—a, update data—]

‘/;an upda

local data\’

I—
te data

Clients call their
callback function

6/20

FL Decentralised - clique topology

@ The algorithm goes in 3 phases
where:
o local data is local machine
learning model
e private data is training data
@ At this point our focus was on
the communication pattern:
e broadcasting
e receiving from clients in any
order!

Phase 1:

Initial broadcast
(nodes act as
servers)

Phase 2:
Sending updates
(nodes act as
clients)

Phase 3:
Aggregating
updates (nodes
act as servers)

{11 \ocal data} |

(1, 1, local data]

xe¥
. oQéa

\x'(\y

/

Y
/\ 1,1, local data]

le—————[2,n, update]

L, locyy data]—,|

W—

le—[2, n, updatel—]

2.1, update]—,|

——I2,1,u

Note: the term “upd.

pdate] —— |

ate” in the messages

above means “update data”.

7/20

PTB-FLA

@ Python Testbed for Federated Learning Algorithms (PTB-FLA)

@ The primary intention is to use PTB-FLA as a framework for developing federated
learning algorithms on small smart devices (swarm, edge computing)

@ PTB-FLA supports both
o the generic centralised one-shot FLA execution
o the generic decentralised one-shot FLA execution

@ Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A simple python testbed for
federated learning algorithms. In: ZINC 2023. pp. 148-153 (2023).

8/20

Outline

© Verification: Untyped calculus and model checking

— o720

Untyped calculus and model checker

@ Calculus: Communicating Sequential Processes (CSP)

e Formal language for describing patterns of interaction in concurrent systems
o Introduced in the late 1970s by Tony Hoare

@ Model checker: Process Analysis Toolkit (PAT)

@ Other process calculi: Calculus of Communicating Systems (CCS), m-calculus

— 10720

Formal verification of FL protocols

@ Specification: FL protocols are modelled in CSP

@ Verification: PAT model checker is used to prove

e deadlock freedom and
e termination

of the two CSP models (top down)

— 1720

CSP Model for Generic Centralised

FLA Algorithm

1 // PTB-FLA

2

3 channel server2client[NoNodes-1] 1;

4 channel clients2server NoNodes-1;

5

6 FlCentralised(noNodes, nodeId, flSrvId, ldata, pdata) =
7 if (nodeId == F1SrvId) {

8 CeServer (noNodes, nodeId, f1SrvId, ldata, pdata)
9 } else {

10 CeClient (noNodes, nodeId, fl1SrvId, ldata, pdata)
11 s

12

13 CeServer (noNodes, nodeId, f1SrvId, ldata, pdata) =
14 {terminated = False} ->

15 CeBroadcastMsg (0, noNodes, nodeld, ldata);

16 CeRcvMsgs (0, noNodes-1);

17 {terminated = True} -> Skip;

18

19 CeBroadcastMsg(id, noNodes, nodeld, ldata) =

20 if (id !'= nodeld) {

21 server2client [id]!1ldata -> Skip

22 };

23 if (id < noNodes-1) {

24 CeBroadcastMsg(id+1, noNodes, nodeId, ldata)

25 s

26

27 | CeRcvMsgs (i, noMsgs) =

28 if (i < noMsgs) {

29 clients2server?update -> CeRcvMsgs(i+1, noMsgs)

30 i |

12 /20

Model checking with PAT

Centralised

B N

####assert
####define
####assert
####assert

SysCentralised () deadlockfree;
Terminated (terminated == True);
SysCentralised() reaches Terminated;
SysCentralised () |= []<> Terminated;

13 /20

o CSP models generated manually from the Python code

@ I. Proki¢, S. Ghilezan, S. Proki¢, M. Popovic, M. Popovic, |. Kastelan. Correct orchestration
of Federated Learning generic algorithms: formalisation and verification in CSP
ECBS 2023 - Engineering of Computer-Based Systems LNCS 14390, 274-288 (2023)

@ CSP models generated atitematically from the Python code

@ M. Djukic, I. Prokic, M. Popovic, S. Ghilezan, M. Popovic, S. Prokic. Correct orchestration of
federated learning generic algorithms: Pyton translation to CSP and verification in PAT.
International Journal on Software Tools and Technology Transfer 27(1), 21-34 (2025).

e 14 /20

Outline

© Verification: Typed calculus and correctness-by-construction

— 15720

Multiparty session types (MPST)

Typed calculus: Multiparty session types (MPST)

o m-calculus like formal language for the verification of message-passing programs
o Introduced by Honda, Yoshida, Carbone (2008,2016)

MPST express protocols-as-types and use type checking to verify whether one or more
communicating processes correctly implement some desired protocols

MPST enjoy (guarantee) safety, deadlock-freedom, liveness and other good
communication properties

Corectness-by-construction

— 57

MPST

Process calculi | m-calculus, CCS, CSP,... Process

Session types | 2 participants communication | !p-send ?g-receive

MPST multiple participants rlp.?q..., p<als.?r....

Subtyping enables flexibility reconfiguration of communication
Advantages

@ Subject reduction

© Progress Disadvantages

o Liveness e insufficient to model

@ Deadlock freedom

arbitrary order of message arrivals

Different extensions for real-life
problems

— T

MPST for FL

@ extension of MPST, specially for this purpose
@ as a novelty, MPST supports

@ the extension is proven to enjoy safety, deadlock-freedom, liveness, and session fidelity
properties
@ FL algorithms are modelled in MPSTs

@ this approach paves the way for more scalable and efficient techniques for verification and
analysis of distributed machine learning algorithms based on correctness-by-construction.

[@ 1. Proki¢, S. Proki¢, S. Ghilezan, A. Scalas, N. Yoshida. On Asynchronous Multiparty Session Types
for Federated Learning. ICTAC 2025.

e 18/20

Conclusion and further work

Done

@ to automatise the translation of
the Python code into the CSP
model

@ to develop MPST for FL

Further investigations
e to verify PTB-FLA CSP models in Maude

@ to identify and prove more properties
relevant to FL

@ Curry-Howard correspondence paradigm
new challenges

19 /20

www.project-tardis.eu

EU’s Horizont Europe

-TEJFQ[)|£3

8@

Resilient
Decentralised
Actyx 9TV Intelligence for
Edge
hﬁ/R/T}L Systems

Caixa ygMégica

.E Telefénica

o>
20/20

	Federated Learning: Distributed machine learning
	Verification: Untyped calculus and model checking
	Verification: Typed calculus and correctness-by-construction

