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Verification is hard

Verification often faces undecidable problems, or NP-Hard.
▶ Heuristics methods are immensely useful in practice, but offer few guarantees.

▶ Instability between versions
▶ Non-determinism
▶ Bugs hard to reproduce
▶ Trial and Error for the user
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Example: Type Checking

Sometimes, reliability is more important than completeness (or expressivity)

Type checking:
Typeclass resolution, subtyping with union/disjunction types, liquid/refinement types,
proving disjointness, etc.

▶ Not logically complete

▶ As expressive as possible

▶ Same behaviour in all contexts and machines

▶ Reasonably fast

▶ Compatible with other elements of the compiler/type system
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Efficient and Predictable building blocks

Efficient and Predicatable building blocks
for verification tools

▶ Incomplete, but...

▶ Clear completeness guarantees

▶ Efficient (≈ polynomial)

▶ Combines with other approaches

▶ Reliable, Reusable, Modular
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Orthologic

One particularly important domain: classical propositional logic

▶ Validity and Satisfiability are (co)NP-complete

“Is a given formula ϕ true?”

▶ Most interesting problems are computationally hard (interpolation, unification
modulo, ...)
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Orthologic

▶ Can we obtain efficient, predictable algorithms for well-characterized weakening of
classical propositional logic?

▶ What about intuitionistic logic? Not better: deciding validity is
PSPACE-complete.

▶ Other Possibility: Orthologic

6



Orthologic

▶ Can we obtain efficient, predictable algorithms for well-characterized weakening of
classical propositional logic?

▶ What about intuitionistic logic? Not better: deciding validity is
PSPACE-complete.

▶ Other Possibility: Orthologic

6



Ortholattices

▶ The propositional logic whose structure is that of Ortholattices

▶ ∧,∨,¬

Classical Logic Boolean Algebras

Intuitionistic Logic Heyting Algebras

Orthologic Ortholattices
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Orthologic

Commutativity x ∨ y = y ∨ x x ∧ y = y ∧ x
Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z
Idempotence x ∨ x = x x ∧ x = x
Constants laws x ∨ 1 = 1 x ∧ 0 = 0
Double negation ¬¬x = x
Excluded middle x ∨ ¬x = 1 x ∧ ¬x = 0
De Morgan’s law ¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∧ y) = ¬x ∨ ¬y
Absorption x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x

▶ Boolean Algebra = Ortholattice + distributivity

Distributivity: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

8



Orthologic

Commutativity x ∨ y = y ∨ x x ∧ y = y ∧ x
Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z
Idempotence x ∨ x = x x ∧ x = x
Constants laws x ∨ 1 = 1 x ∧ 0 = 0
Double negation ¬¬x = x
Excluded middle x ∨ ¬x = 1 x ∧ ¬x = 0
De Morgan’s law ¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∧ y) = ¬x ∨ ¬y
Absorption x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x

▶ Boolean Algebra = Ortholattice + distributivity

Distributivity: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

8



Example

In orthologic, given
¬(¬a ∨ (a ∧ b))

Does
(¬c ∨ b) ∨ (¬b ∧ (c ∨ ¬a))

hold?

Yes (and hence so does it in classical logic)

9



Example

In orthologic, given
¬(¬a ∨ (a ∧ b))

Does
(¬c ∨ b) ∨ (¬b ∧ (c ∨ ¬a))

hold?
Yes (and hence so does it in classical logic)

9



Why is it interesting?

Orthologic has good properties:

▶ O(n2) normalization algorithm1

1Guilloud, Bucev, Milovančević, Kunčak. Formula Normalizations in Verification. CAV 2023.
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Orthologic Normal Form

Definition
Let T be the set of terms over (∧,∨,¬, 0, 1).
f : T → T is a normal form function if

∀w1,w2 ∈ T ,w1 ∼ w2 ⇐⇒ f (w1) = f (w2)

Theorem
There exists a normal form function for OL computable in O(n2).
Moreover, it computes a term of smallest size.
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Orthologic Normal Form

Example:
[¬(a ∧ ¬b) ∧ (¬a ∨ c)] ∨ b ⇝ ¬a ∨ b

▶ Fully compatible with structure sharing

▶ Never increases size

▶ Normal form is equivalent, not just equisatisfiable

Efficient, predictable, modular building block
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Why is it interesting?

Orthologic has good properties:

▶ O(n2) normalization algorithm3

▶ Proof system with O(n3) proof search with non-logical axioms (O(n2) without
axioms)4

3Guilloud, Bucev, Milovančević, Kunčak. Formula Normalizations in Verification. CAV 2023.
4Guilloud, Kunčak. Orthologic with Axioms. POPL 2024.
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Proof System for Orthologic

Sequent-Calculus-like:

ϕL, ψR provable ⇐⇒ ϕ ≤ ψ valid in all ortholattices

Classical Logic Sequent Calculus LK

Intuitionistic Logic max. one formula on the right

Orthologic max. two formulas total
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Proof System for Orthologic

Sequent Calculus style proof system:

Hyp
ϕL, ϕR

Γ, ψR ψL,∆
Cut

Γ,∆

Γ
Weaken

Γ,∆

Γ, ϕL
LeftAnd

Γ, (ϕ ∧ ψ)L
Γ, ϕR Γ, ψR

RightAnd
Γ, (ϕ ∧ ψ)R

Γ, ϕL Γ, ψL

LeftOr
Γ, (ϕ ∨ ψ)L

Γ, ϕR
RightOr

Γ, (ϕ ∨ ψ)R

Γ, ϕR
LeftNot

Γ, (¬ϕ)L
Γ, ϕL

RightNot
Γ, (¬ϕ)R

Ax(Γ,∆) If Γ,∆ is an axiom
Γ,∆

Γ and ∆ are arbitrary annotated formula, or no formula.
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Proof System for Orthologic

Adding axioms makes Orthologic more expressive

▶ Reasoning within a body of knowledge

▶ Unlike classical logic, we can’t put axiom directly in the formula

▶ Allowing axioms allows stating and prove more things

Example: set of known facts of classical logic, asserted by a solver
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Cut elimination

Let A be a set of axioms:

Theorem
If a sequent S is provable, it has a proof where the only cut formulas are among the
axioms in A, i.e. ψ ∈ A.

Γ, ψR ψL,∆
Cut

Γ,∆

Corollary

The proof system enjoy the Subformula Property : If a sequent S is provable, it has a
proof where only subformulas of S and axioms in A appear.
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Efficient Proof Search

The Subformula property lets us devise an efficient proof search algorithm:

Algorithm: Proof Search for OL with Axioms

1 def prove(Γ, ∆)
2 Find all rules that can conclude with Γ, ∆
3 Recursively solve the m smaller formulas
4 Memoize intermediate results

Let n be the size of the input (axioms + goal):

▶ at most O(n2) different inputs

▶ m = O(1 + |A|)
▶ Running time: O(n2 · (1 + |A|))
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Why is it interesting?

Orthologic has good properties:

▶ O(n2) normalization algorithm3

▶ Proof system with O(n3) proof search with non-logical axioms (O(n2) without
axioms)2

▶ Classicaly complete for important classes of formulas

3Guilloud, Bucev, Milovančević, Kunčak. Formula Normalizations in Verification. CAV 2023.
2Guilloud, Kunčak. Orthologic with Axioms. POPL 2024.
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Classical completeness

OL with axioms is complete for Horn clauses and extensions of Horn clauses

Horn clause {¬a1, ...,¬an, b} becomes (a1 ∧ ... ∧ an)L, bR

Theorem
A set of Horn clauses is satisfiable in OL if and only if it is satisfiable in CL.

Also true for renamed Horn, extended Horn and 2SAT
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Predicate Orthologic

▶ Propositional Orthologic can be extended to Predicate Orthologic (with axioms)

▶ Of interest: Effectively Propositional Orthologic (i.e. predicates, constants and
variables but no functions nor quantifiers)

▶ Complete for Horn Clauses =⇒ Extension of Datalog
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Why is it interesting?

Orthologic has good properties:

▶ O(n2) normalization algorithm3

▶ Proof system with O(n3) proof search with non-logical axioms (O(n2) without
axioms)3

▶ Classicaly complete for important classes of formulas

▶ Has interpolation property4

▶ Other useful and interesting logical properties.

3Guilloud, Bucev, Milovančević, Kunčak. Formula Normalizations in Verification. CAV 2023.
3Guilloud, Kunčak. Orthologic with Axioms. POPL 2024.
4Guilloud, Gambhir, Kunčak. Interpolation and Quantifiers in Ortholattices. VMCAI 2024
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Interpolation

Theorem
Let A and B be propositional formulas. If A ⊢ B then there exists a formula I such
that:

A ≤ I ≤ B

and FV(I ) ⊆ FV(A) ∩ FV(B).

Proof.
Show it for sequents. By induction on the proof of AL,BR
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Additional Properties

▶ OL admits a Tseitin-like normal form

▶ OL can be simulated by width 5 resolution

▶ More properties of Effectively Propositional OL
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Coq formalization

Formalized OL proof system (without axioms) in Coq5.

▶ Mechanized Cut Elimination

▶ Soundness of orthologic proof search, with memoization and reference equality

▶ Tactic (using reflection) for OL equivalence and normalization, including for the
bool type.

5Guilloud, Pit-Claudel. Verified and Optimized Implementation of Orthologic Proof Search.
Preprint.
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Stainless: Program Verification using OL

Stainless is a tool for verification of Scala programs.

▶ Generates Verification Conditions (VC) that are then submitted to SMT solvers

▶ VCs are simplified and cached with respect to orthologic.
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Stainless: Program Verification using OL

LongMap System F QOI RedBlack SortedArrayConcRope0.0
0.2
0.4
0.6
0.8
1.0

Ti
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tio

Old
OCBSL
OL

▶ The grey-filled boxes represent the time saved thanks to extra caching.

▶ Simplification occasionally made the solvers’ life harder (hand tuned assertions).

▶ OCBSL = Orthocomplemented Bisemilattices6

6Guilloud, Kunčak. Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear
Time. TACAS 2022.
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Lisa’s Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ϕ and ψ, does ϕ ∼OL ψ hold?

▶ Worst case O(n2) time

▶ Also alpha-equivalence, symmetry and reflexivity of equality...

▶ Proof Checker uses it instead of syntactic equality.

Other example:

1 assume( (a \/ b) /\ ( a \/ c) \/ b )
2 have( a \/ b ) by Restate

28
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application: DPLL-like Propositional Solver

For a formula f :

▶ Simplify f

▶ If it is ⊤ returns true. If it is ⊥, returns false

▶ Pick a literal a in f

▶ Solve recursively f [a := ⊤] and f [a := ⊥]

Idead: simplify with Orthologic.
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Propositional Solver tactic

1 def dpll( f: Formula) =
2 val f = reducedForm( f) //computes OL−normal form
3 if f == ⊤ then have(f) by Hypothesis
4 else if f == ⊥ then fail(”Not a tautology”)
5 else
6 val a = findBestAtom(f)
7 val step1 = subproof : //solve recursively
8 have(dpll(f(a := ⊤)))
9 thenHave(a |− f) by Substitution(⊤ ⇐⇒ a)

10 val step2 = subproof : //solve recursively
11 have(dpll(f(a := ⊥)))
12 thenHave(!a |− f) by Substitution(⊥ ⇐⇒ a)
13 have(f) by Cut(step1, step2)
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Orthologic Type System

▶ Type system with subtyping (<:), union (|), intersection types (&) : lattice

▶ Intuitively, t : T1|T2 iff t : T1 or t : T2

▶ Examples: Scala, Flow, TypeScript

▶ If we add negation types: Ortholattice

▶ Intuitively, t : ¬T iff not t : T1

▶ Idea: decide A <: B by checking A ⊢ B in orthologic!

31



Orthologic Type System

▶ Type system with subtyping (<:), union (|), intersection types (&) : lattice

▶ Intuitively, t : T1|T2 iff t : T1 or t : T2

▶ Examples: Scala, Flow, TypeScript

▶ If we add negation types: Ortholattice

▶ Intuitively, t : ¬T iff not t : T1

▶ Idea: decide A <: B by checking A ⊢ B in orthologic!

31



Orthologic Type System

▶ Type system with subtyping (<:), union (|), intersection types (&) : lattice

▶ Intuitively, t : T1|T2 iff t : T1 or t : T2

▶ Examples: Scala, Flow, TypeScript

▶ If we add negation types: Ortholattice

▶ Intuitively, t : ¬T iff not t : T1

▶ Idea: decide A <: B by checking A ⊢ B in orthologic!

31



Orthologic Type System

▶ Type system with subtyping (<:), union (|), intersection types (&) : lattice

▶ Intuitively, t : T1|T2 iff t : T1 or t : T2

▶ Examples: Scala, Flow, TypeScript

▶ If we add negation types: Ortholattice

▶ Intuitively, t : ¬T iff not t : T1

▶ Idea: decide A <: B by checking A ⊢ B in orthologic!

31



Orthologic Type System

▶ We also want to support type constructors, such as List[T ] or arrow types,
A ⇒ B

▶ Some are covariant or contravariant:

A <: B −→ List[A] <: List[B]

Luckily, OL normalization and proof search with axioms can be extended to
support (anti)monotonic functions and still work (O(n2) · |A|)
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Orthologic Type System

Many common and less common constructs can be encoded in such system:

▶ Inheritence relations become classes

▶ Bounded polymorphism

def foo[T<: Int](x: T): T = ...

▶ Types of things that are not null, things that are not functions, ...

▶ Record types with depth, width and permutation subtyping

▶ Equirecursive types

▶ and more
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Conclusion

▶ Orthologic
▶ Efficient and Predictable Building Block
▶ Normalization algorithm, proof system
▶ Good logical properties (interpolation, ...)
▶ Tons of applications, many more to explore!
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Example

Assume ¬(¬a ∨ (a ∧ b)). Deduce:

a ∧ (¬a ∨ ¬b) NNF
a, (¬a ∨ ¬b)
(¬1 ∨ ¬b) substituting a = 1
¬b

Then,
(¬c ∨ b) ∨ (¬b ∧ (c ∨ ¬a))
∼ (¬c ∨ 0) ∨ (1 ∧ (c ∨ 0)) substituting a = 1, b = 0
∼ ¬c ∨ c
∼ 1
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