How to extend the set-theoretic vocabulary in a type-safe way?

Vedran Čačić

Department of Mathematics Faculty of Science University of Zagreb

Thursday, 25th September 2025 Logic & APplication Dubrovnik

Basic language of NF(U)

Quine's NF: a very elegant theory of classes, intended as a better foundation of mathematics. Axioms: only extensionality and stratified comprehension. Problems: (Specker) NF $\models \neg AC$; no consistency proof

Jensen's **NFU**: a product of observation that a consistency proof can be obtained if atoms are allowed. Basic vocabulary σ_0 : three relation symbols (binary =, binary \in , unary set), no function and no constant symbols (therefore terms are just variables)

That gives us atomic formulas (over σ_0): we get general formulas by using logical constants (basic \bot ; derived \top), connectives (basic \to ; derived \neg , \lor , \land , \leftrightarrow) and quantifiers (basic \forall ; derived \exists , $\not\equiv$, restricted quantification; later, quantification over terms)

Connectedness

Two nonconstant terms in a formula φ are 1-connected if

- 1. both of them are arguments of some atomic formula $R(t_1, \ldots, t_k)$ [they are t_i and t_j for some i < j], or
- 2. one of them is an argument of another [they are t_i and $f(t_1, \ldots, t_k)$ for some i and function symbol f].

[The rule (2) is currently not applicable (no function symbols), but it will apply later. Currently, (variables) x and y are 1-connected if and only if $x \in y$ or x = y is a subformula of φ .]

Connectedness is the equivalence closure of 1-connectedness.

A formula is connected if all its nonconstant terms are connected.

We will only consider connected formulas.

Thesis: All useful formulas, and all formulas actually appearing in developing some theory, are connected.

Stratification

Each k-ary function symbol has a signature: a k-tuple of integers. Each relation symbol R also has a signature [R], starting with 0. Currently, [set] := (0), [=] := (0,0) and $[\in] := (0,1)$.

Stratification of a formula φ is a mapping tp from all nonconstant terms of φ to integers, satisfying the following conditions:

- 1. if $R(t_1, \ldots, t_k)$ is a subformula of φ , and t_i and t_j are nonconstant terms, then $tp(t_i) \delta_i = tp(t_j) \delta_j$, where $[R] = (\delta_1, \ldots, \delta_k)$ (and $\delta_1 = 0$).
- 2. if $t := f(t_1, ..., t_k)$ is a subterm of φ and t_i is a nonconstant term (implying t is nonconstant too), then $tp(t_i) \delta_i = tp(t)$.

[As on the previous slide, condition (2) applies only later.]

A formula is stratified if it has a stratification. We will only consider stratified (sentences, or) formulas with one distinguished free variable, which we call z: such a formula has a unique grounded stratification satisfying tp(z) = 0 (or any given number).

Introducing relation symbols

Let $\psi(z,\vec{x}^k)$ be a stratified formula (with exactly k+1 variables z,\vec{x} free), and let tp be its grounded stratification. We introduce a new (k+1)-ary relation symbol R_ψ with signature $(0,tp(x_i)_{i=1}^k)$ and an axiom

$$\forall z \forall \vec{x} (R_{\psi}(z, \vec{x}) \leftrightarrow \psi).$$

This is a conservative extension.

Example

$$\neq$$
 is $R_{\neg(z=x_1)}$. \subseteq is $R_{(\forall u \in z)(u \in x_1)}$. \subset is $R_{z \neq x_1 \land z \subseteq x_1}$. \ni is $R_{x_1 \in z}$. "being disjoint" is $R_{\neg(\exists u \in x_1)(u \in z)}$. $[\neq] = [\subseteq] = [\subset] = [\text{disjointness}] = (0,0)$, while $[\ni] = (0,-1)$.

Let func(f, X, Y) mean $f: X \to Y$. Then func $= R_{\psi}$ for

$$\psi := (\forall u^{-3} \in x_1^{-2})(\exists! v^{-3} \in x_2^{-2})((u, v)^{-1} \in z^0) \land \\ \land (\forall p^{-1} \in z)(\exists u \in x_1)(\exists v \in x_2)(p = (u, v)),$$

with [func] = (0, -2, -2). [Grounded stratification written above.]

Introducing function symbols

Let $\psi(z, \vec{x}^k)$ be a stratified formula (with exactly $k+1 \geq 2$ variables z, \vec{x} free), and let tp be its grounded stratification. We introduce a new k-ary function symbol f_{ψ} with signature $(tp(x_i)-1)_{i=1}^k$ and an axiom (again, a conservative extension)

$$\forall \vec{x} \big(\mathsf{set} \big(f(\vec{x}) \big) \land \forall z \big(z \in f(\vec{x}) \leftrightarrow \psi \big) \big).$$

Example

[As usual, we prescribe that "undefined" terms denote \emptyset .]

Introducing constant symbols

Let $\psi(z)$ be a stratified formula with only z free. We introduce a new constant symbol c_{ψ} and an axiom (conservative extension)

$$\operatorname{set}(c_{\psi}) \wedge \forall z (z \in c_{\psi} \leftrightarrow \psi).$$

Constant symbols are not typed, and they don't have a signature.

Example

$$\emptyset := c_{z \neq z}, \ V := c_{z = z}, \ SET := c_{\mathsf{set}(z)}.$$
 If we define $Sc := f_{(\exists u \in z)(z \setminus \iota(u) \in x_1)}, \ \bigcap := f_{(\exists v \in x_1)(z \in v)}$ and $IND(z) := (\iota(\emptyset) \in z \land (\forall u \in z)(Sc(u) \in z)), \ \text{then } \mathbb{N} = \bigcap c_{IND}.$

And so on. We can define new symbols using stratified formulas over some layer σ_n , and put them in a new layer σ_{n+1} . In the limit (union), we get a **maximally extended language** $\sigma_\omega := \bigcup_{n \in \omega} \sigma_n$ and a theory \mathcal{T}_ω which is a *conservative* extension of the basic theory \mathcal{T}_0 over σ_0 (containing extensionality, sethood and stratified comprehension, but possibly also other axioms such as choice).

Reduction down to basic language

Moreover, using additional axioms, every formula φ over σ_ω can be converted, constructively, into an equivalent (in \mathcal{T}_ω) formula φ_0 over σ_0 , by systematically eliminating new symbols (from higher layers to lower ones). For start, any subformula $R_\psi(t,t_1,\ldots,t_k)$ can be replaced by $\psi(t|z,t_1|x_1,\ldots,t_k|x_k)$. Also, obviously, any formula of the form $t\in c_\psi$ can be replaced by $\psi(t|z)$, but also other formulas involving c_ψ , as shown:

- $t=c_{\psi}$ rewrite as $\forall u (u \in t \leftrightarrow t \in c_{\psi})$ by weak extensionality (new axiom ensures $\operatorname{set}(c_{\psi})$), and then apply the above;
- $c_{\psi} \in t$ rewrite as $(\exists u \in t) (u = c_{\psi})$ by logical axioms of equality (Leibniz substitutability), and then apply the above.

The same process can be performed with function symbols.

 φ is stratified if and only if φ_0 is stratified; moreover, tp_{φ} and tp_{φ_0} agree on all free variables of both formulas.