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The problem
Cyberphysical systems (CPS) are increasingly present, playing critical roles.


CPSs operate in unknown, unpredictable environments: effecting and being effected.

Waymo

Smart city

Precision agriculture

Smart building



Requirements
It is important to model and reason about interaction with the environment at design 
time.


A foundational formal framework for developing CPS models should support 
representation and reasoning about:


• interaction with unknown/unpredictable environments


• discrete and continuous change (cyber and physical) 


• concurrent and distributed execution


• diverse interactions among components including synchronous and asynchronous 
discrete interactions, as well as continuous interactions such as flow of a physical  
quantity among components (e.g., force, energy, liquid, etc.)


• composition operations that model these different interactions


• methods to support scaling in time and space such as symbolic reasoning and 
abstraction; and compositional design and reasoning



State of the Art  (a sketch)
• Many kinds of automata (Team Automata, Constraint Automata, IO 

Automata, Interface Automata, ...) and process algebras: concurrent 
execution and composition with a mix of synchronous and 
asynchronous interaction with other components


• Rewriting logic -- a formalism for specifying concurrent and 
distributed systems. Rich algebra of modules for composition, 
diverse reasoning tools. Native execution model is closed system. 
Symbolic execution captures some enviornment effects


• Composable Semantics — behaviors as sets of Timed (I/O) Event 
Stream, composition parameterized by interaction constraints.



Contributions
• Definition of the Concurrent Rules Machine  (CRM) model: structure 

and operational semantics.


• Interaction with the environment is explicit, enabling representation 
and reasoning about open systems 


• Supports  multiple models of time including implicit time (before/
after relations)


• An algebra of CRM components including several composition 
operations, and a division relation for reasoning about 
decomposition. 


• Symbolic execution — a step towards executability and automating 
reasoning



Running Example
• A Water tank with components: 


• WaterLevel (WL) -- water level sensor


• Control (WCI/WCO)  --- controls in and/or out flow


• Physical constraints:


• WLMin <= wl <= WLMax 


• fin, fout in [0,1] — in/out flow rates


• wl(t) = wl(t0) + (fin - fout) * (t - t0)


• Controller goal  


• WLmin < WLMinS <= wl <= WLMaxS < WLMax

fin

fout

—wl



Concurrent Rules Machines 
          in a Nutshell 



CRM Structure
Key concepts


• D -- data values  

• Name --   variable names

• Valuation -- finite map, V, from Name to D

• Guard  -- predicate on values of names, V |= G

• Action -- evaluates to a valuation, view as a valuation update 


• non-conflicting action sets

• Rule   --  (guard, action set)


 A CRM is given by a tuple (I,A0,R,T) where

•   I = (Imp, Exp, Sh) -- interface == disjoint sets of names 


• Env writes Imp -- imports

• CRM writes Exp -- exports      

• both write/read Sh -- shared


• A0  is a finite set of (non-conflicting) actions for initialization

• R  is a finite set of Rules

• T  is a finite set of (non-conflicting) actions for step termination



WL CRM



CRM Semantics
• CRM execution state is a valuation function:   V : Names -f> D


• Execution alternates between action of Env and CRM rules


• init:    empty -env> V' -A0-> V''  -T> V0


• step:  Vj -env> V'j -rs-> V''j -T> Vj+1


where


• Vj -env> V'j -- Env updates some of Imp + Sh


• V'j -rs> V''j -- action of rs, a set of rules st guards  are 
satisfied by V'j and combined actions are non-conflicting in 
V'j 


• V''j -T-> Vj+1  -- application of actions in T


• Traces are sequences of steps



WL execution



CRM Algebra
• mtCRM = {mt,mt,mt,mt}


• C1 << C2  componentwise subset


• C1 U C2   componentwise union  -- is CRM under some conditions


• C1 /\ C2  componentwise intersection -- CRM


• C1 x C2  product -- a restriction of U, guaranteed to be a CRM


• (Exists name)CRM -- hiding, makes name private


• C1 ; C2 --  a sequential composition, where at each step


•  the Env acts, then chosen rule set  C1 is applied  followed by T1, then 
chosen ruleset of C2 followed by  T2       


• C1 + C2  a sequential composition where at each step


• the Env acts, then chosen rule set  C1 is applied  then the chosen ruleset 
of C2 followed by the combined actions of T1 and T2


• C1 divisibleBy C2  relation  -- essentially C1 covers C2


• C1/C2 -- defined if C1 divisibleBy C2  -- essentially the set Q st C2 x Q ~ C1


CRM intersection, union, x, are associative, commutative, and idempotent.



WL division

  WCO divides WCIO and WCI is in WCIO/WCO



What is missing?

• CRMs allow us to directly represent interaction of a system with its 
environment.


• One can choose different system boundaries and move components 
in and out using the CRM algebra.


• BUT


• How do we prove properties of specific CRMs?


• How can we automatically generate traces?


• How can we  automate reasoning tasks when there is possibly 
unbounded non-determinism in the actions of the environment?



Idea
• Represent updates by the environment by fresh (typed) symbols (ala 

uninterpreted constants), possibly constrained to represent physically 
meaningful change or operational domain assumptions.


• CRM actions inherit the symbolic nature, with the results of actions 
represented by fresh symbols constrained to be equal to the action function 
applied to symbolic values.


• A constrained symbolic valuation represents the set of its ground instances.


• At each potential execution step we need to check that the accumulated 
constraints are satisfiable, i.e. the symbolic execution describes a non-
empty set of actual executions.


• In this setting one can automate reachability analysis if a suitable constraint 
solver is available.



Some details I
• Execution state is a symbolic valuation: (W,b)


• W maps names to symbols


• b is a constraint (boolean expression) over these symbols


• The meaning of (W,b) is a set of concrete valuations is given by its 
instances.


• Substitution 𝜎 is an instance of ( W,b) if b[𝜎] is true


• V is an instance of (W,b) if V = W[𝜎] (= 𝜎 o W)  for 𝜎 an instance of 
(W,b)



Some details II
• R is a candidate ruleset for (W,b) if


• each rule guard is satisfied by every instance of (W,b)


• the joint action sets of R is non-conflicting in every instance of 
(W,b)


• Effect of action set A on symbolic valuation


• A[[W]] = (ZA,bA)


• ZA  — maps write names of A to fresh symbols


• bA  -- the conjunction of constraints for each action of A



Symbolic CRM step

• E environment action


• R action by candidate rule set


• Termination action 



Constraining the environment
• CRM steps are constrained to conform to the actions of cadidate rules and 

terminal actions


• The environment is constrained uniformly by a constraint specification envB = 
(ns,cs) where cs is a set of assignments to and boolean expressions over 
names in ns.


• The meaning of assignments in envB depend on the starting valuation and the 
updated valuation of a step:  


• envB[[WE(ns),W(ns)]] 


• WE
E  is W updated by fresh symbols for the names assigned by the 

environment.


• Note envB constrains not only the values assigned but also the actions of  the 
environment     



Example: Input controller
  WCI = (WCI.I, WCI.A0, WCI.R, WCI.T) 

where 

  WCI.I = ({'wl,'time}, {'fin}, {})  --- {Im,Ex,Sh} 

  WCI.A0 = {(< >, \lambda (). 'fin := finInit)}   

  WCI.R = { (true, {ic.fin})}  

  WCI.T = (< 'fin >, \lambda f. 'fin0 := f) --- caching 'fin 

  ic.fin = (< 'fin0, 'wl >, \lambda (f0,  wl). finexp 

  finexp = 'fin := (if wl > WL.smx then 0  else (if wl < WL.smn then 1 else 1/2 fi) fi) ) 

  envB = (<'wl 'fin 'fout 'time 't0 >, 

           WL.min <= 'wl and 'wl <= WL.max and  'wl := 'wl + ('fin - 'fout) * ('time - 't0) ) 

wlInit = 3   WL.max = 5  WL.min = 3  WL.smx = 9/2   WL.smn  = 7/2



Symbolic reasoning

   (v('fin,0) := 31/32) (v('fout,0) := 1/32) (v('wl,0) := 3) 
  (v('fin,1) := 1/2)   (v('fout,1) := 1/16) (v('wl,1) := 63/16)  
  (v('fin,2) := 1/2) (v('fout,2) := 1/8) (v('wl,2) := 35/8)  
  (v('fin,3) := 0)   (v('fout,3) := 1/2) (v('wl,3) := 19/4)

• We consider two simple questions about WCI that can be answered 
using symbolic execution.


• Q1: Can the water level go above WL.smx?  


• The answer is yes.  (using symbolic search and SMT solver)



Symbolic reasoning II

  (v('fin,0) := 1)  (v('fout,0) := 0 (v('wl,0) := 3 
  (v('fin,1) := 0)  (v('fout,1) := 1/2) (v('wl,1) := 5 

• Q2: Can the water level reach WL.mx?


• The answer to the second question is, up to time 12, no.


• However if we change the time step to be increments of 2, then the 
answer is yes.



Soundness  and Completeness Theorems

• Theorem 1. (Soundness) Each instance of a symbolic trace of a CRM 
is a (concrete) trace of that CRM

• Theorem 2 (Restricted Completeness). If CRM, C, is symbolically 
complete, and

is a concrete trace of C such that F j satisfies envB for −1 ≤ j < m, then there is 
a symbolic trace, Tr∗, of C with environment constraint envB such that Tr is an 
instance of Tr∗.



Symbolic Completeness

• Definition 3 (Symbolically complete CRM). A CRM is symbolically 
complete if given any (reachable) symbolic valuation (W,b), and 
substitution, σ, that satisfies b; if rule set R is a candidate for 
execution in the context of W[σ] then R is a candidate for execution in 
the context of W[σ′] for any σ′ satisfying b.


• Lemma 1 (One (sub)step completeness). If CRM, C, is symbolically 
complete, (W,b) a reachable symbolic valuation, σ, an instance of 
(W,b), V = W[σ] the corresponding valuation instance, and R a 
candiate rule set wrt V then

where V′ is an instance of (W′,b′)



Summary and Future Work
• CRM is a model of concurrent (and distributed) computation that supports


• representing interaction with arbitrary environment


•  discrete and continuous actions


•  compositional specification via the algebra of compositions and decomposition


• Symbolic execution is step twoards automated verification


• it is sound and complete for large class of CP CRMs


• Future work


• Implementation in RWL


• Constrained CRM  


• Composition via interaction constraints modeling  (a)synchrony, flow, space


• Compositional reasoning



That’s all for now ! 
Questions?
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