Concurrent Rules Machines:
A Model of Open Cyberphysical Systems

Carolyn Talcott (joint work with Farhad Arbab
LAP September 2025

The problem

Cyberphysical systems (CPS) are increasingly present, playing critical roles.

Fire Alarm

Weather Renewable Energy

Station System

g::]at or Card Access &
Security System

Shade e

e

System System

Utility Power

Metering ‘ = Management

Occupant
Interface

Software

Hoteling ﬂ

‘_. Digital
Signage
Dashboard

; Smart building

Smart city
CPSs operate in unknown, unpredictable environments: effecting and being effected.

Requirements

It Is Important to model and reason about interaction with the environment at design
time.

A foundational formal framework for developing CPS models should support
representation and reasoning about:

* interaction with unknown/unpredictable environments
» discrete and continuous change (cyber and physical)
e concurrent and distributed execution

e diverse interactions among components including synchronous and asynchronous
discrete interactions, as well as continuous interactions such as flow of a physical
quantity among components (e.g., force, energy, liquid, etc.)

e composition operations that model these different interactions

 methods to support scaling in time and space such as symbolic reasoning and
abstraction; and compositional design and reasoning

State of the Art (a sketch)

 Many kinds of automata (Team Automata, Constraint Automata, 10
Automata, Interface Automata, ...) and process algebras: concurrent
execution and composition with a mix of synchronous and
asynchronous interaction with other components

* Rewriting logic -- a formalism for specitfying concurrent and
distributed systems. Rich algebra of modules for composition,
diverse reasoning tools. Native execution model is closed system.
Symbolic execution captures some enviornment effects

« Composable Semantics — behaviors as sets of Timed (I/0) Event
Stream, composition parameterized by interaction constraints.

Contributions

* Definition of the Concurrent Rules Machine (CRM) model: structure
and operational semantics.

* |nteraction with the environment is explicit, enabling representation
and reasoning about open systems

o Supports multiple models of time including implicit time (before/
after relations)

* An algebra of CRM components including several composition

operations, and a division relation for reasoning about
decomposition.

 Symbolic execution — a step towards executability and automating
reasoning

Running Example

A Water tank with components:
 WaterlLevel (WL) -- water level sensor

* Control (WCI/WCQ) --- controls in and/or out flow

* Physical constraints: 4

e WLMin <= wl <= WLMax @

water

e fin, fout in [0,1] — in/out flow rates

o wl(t) = wli(t0) + (fin - fout) * (t - tO)
* Controller goal

 WLmMIin < WLMInS <= wl <= WLMaxS < WLMax

Concurrent Rules Machines
In a Nutshell

CRM Structure

Key concepts

D -- data values

e Name -- variable names

e Valuation -- finite map, V, from Name to D

e Guard -- predicate on values of names, V |= G

* Action -- evaluates to a valuation, view as a valuation update
* non-conflicting action sets

 Rule -- (guard, action set)

A CRM is given by a tuple (I,Ao0,R, T) where

| =(Imp, Exp, Sh) -- interface == disjoint sets of names
 Env writes Imp -- imports
 CRM writes Exp -- exports
* both write/read Sh -- shared

* Ao is a finite set of (hon-conflicting) actions for initialization

R is afinite set of Rules

T is afinite set of (hon-conflicting) actions for step termination

WL CRM

WL = (WL.I, WL.A®, WL.R, WL.T)
where
WL.I = ({’fin, ’'fout, ’'time}, {’wl},{})
--- the interface with imports (’fin ’fout ’'time), exports (’wl)
and no shared variables ({}).
WL.A® = {(< >, \lambda (). ’'wl := WCminSafe)}
--- the 1nitialization action
WL.R = { (true, {a.wl})}
--- the rule updating the water level
WL.T = {(< ’time, ’'fin, ’fout >,
\lambda (t, fin, fout).
{’t0 := t,’fin® := fin, ’'fout® := fout})}
--- the termination action that caches the
values of 'fin 'fout and ’time
and
a.wl

(< "£fin0®, 'foutl®, ’'t0, 'time , ’'wl >,
\lambda (£fin®, fout®, t0O, t, wl@).
'wl := wl® + (£fin® - fout®) * (t - t0®))

CRM Semantics

 CRM execution state is a valuation function: V : Names -f> D
* Execution alternates between action of Env and CRM rules

e |nit: empty -env> V' -Ap-> V"' -T> Vo

e step: Vj-env> V'j-rs-> V'j-T> Vi1
where

* Vj-env> V'j-- Env updates some of Imp + Sh

 \V-rs>V'--action of rs, a set of rules st guards are
satisfied by V'; and combined actions are non-conflicting in
V'

 V'i-T-> Vj1 -- application of actionsin T

e Traces are sequences of steps

WL execution

time fin fout wl t® fin® fout®

\ 1 .5 Env initiates
2.0 \ 1 .5 WL AO;T

1 0 1 Env writes
2.5 1 \ 1 WL,R ; WL.T

2 1 \ Env writes
1.5 2 1 \ WL,R ; WL.T

3 1 \ Env writes

2.5 3 1 \) WL,R ; WL.T

CRM Algebra

MtCRM = {mt,mt,mt,mt}

C1 << G2 componentwise subset

C1 U C2 componentwise union --is CRM under some conditions
C1 N\ C2 componentwise intersection -- CRM

C1 x C2 product -- a restriction of U, guaranteed to be a CRM
(Exists name)CRM -- hiding, makes name private

C1; C2 -- a sequential composition, where at each step

* the Env acts, then chosen rule set C1 is applied followed by T1, then
chosen ruleset of C2 followed by T2

C1 + C2 a sequential composition where at each step

* the Env acts, then chosen rule set C1 is applied then the chosen ruleset
of C2 followed by the combined actions of T1 and T2

C1 divisibleBy C2 relation -- essentially C1 covers C2
C1/C2 -- defined if C1 divisibleBy C2 -- essentially the set Q st C2 x Q ~ CA

CRM intersection, union, x, are associative, commutative, and idempotent.

WL division

WCO divides WCIO and WCl is in WCIO/WCO

WCIO= (WCIO.I, WCIO.A®, WCIO.R, WCIO.T)

where
WCIO.I = ({’wl},{’fin, ’fout}, {}) --- imports, exports, shared
WCIO.A® = {(< >,\lambda (). 'fin := 0; ’'fout := .5)}
WCIO.R =

{ RI: {wc.rl, wc.r2}
RO: { (true, {a.wo}) }

}
WCIO.T = {}

WCO = (WCO.I, WCO.A®, WCO.R, WCO.T)
where
WCO.I = ({’wl}, {’fout}, {}) -- imports,exports,shared
WCO0.A® = {(< >,\lambda (). 'fout := .5)}
WCO.R = { RO: (true,{a.wo}) }
WCO.T = {}

What is missing?

CRMs allow us to directly represent interaction of a system with its
environment.

One can choose different system boundaries and move components
in and out using the CRM algebra.

BUT
How do we prove properties of specific CRMs?
How can we automatically generate traces?

How can we automate reasoning tasks when there is possibly
unbounded non-determinism in the actions of the environment?

Idea

Represent updates by the environment by fresh (typed) symbols (ala
uninterpreted constants), possibly constrained to represent physically
meaningful change or operational domain assumptions.

CRM actions inherit the symbolic nature, with the results of actions
represented by fresh symbols constrained to be equal to the action function
applied to symbolic values.

A constrained symbolic valuation represents the set of its ground instances.

At each potential execution step we need to check that the accumulated
constraints are satisfiable, i.e. the symbolic execution describes a non-
empty set of actual executions.

In this setting one can automate reachability analysis if a suitable constraint
solver is available.

Some details |

* Execution state is a symbolic valuation: (W, b)
* |V maps names to symbols
e b is a constraint (boolean expression) over these symbols

 The meaning of (W,b) is a set of concrete valuations is given by its
Instances.

o Substitution o is an instance of (W,b) if b[g] is true

* Vis aninstance of (W,b) if V = W|o] (= 0 o W) for 0 an instance of
(W,b)

Some details Il

R is a candidate ruleset for (W,b) if
* each rule guard is satisfied by every instance of (/V,b)

* the joint action sets of R is non-conflicting in every instance of
(W.b)

o Effect of action set A on symbolic valuation
* AllW]] = £A,64)
e /A — maps write names of A to fresh symbols

 bA -- the conjunction of constraints for each action of A

Symbolic CRM step

(W,b) —»g (W, b A b")

—r (WX b A BE A DY

—7 (WL, b AB® AR A B
e E environment action

* R action by candidate rule set

e Termination action

Constraining the environment

CRM steps are constrained to conform to the actions of cadidate rules and
terminal actions

The environment is constrained uniformly by a constraint specification envB =
(ns,cs) where cs is a set of assignments to and boolean expressions over
names in ns.

The meaning of assignments in envB depend on the starting valuation and the
updated valuation of a step:

e envB[[WE(ns),W(ns)]]

WE is W updated by fresh symbols for the names assigned by the
environment.

Note envB constrains not only the values assigned but also the actions of the
environment

Example: Input controller

WCI = (WCI.I, WCI.AO, WCI.R, WCI.T)
where
WCLI = ({'wl,'time}, {'fin}, {}) --- {Im,Ex,Sh}
WCI.AO = {(< >, \lambda (). 'fin := finInit)
WCI.R = { (true, {ic.fin})}
WCI.T = (< 'fin >, \lambda f. 'fin0 :=f) --- caching 'fin
ic.fin = (< 'fin0, '‘'wl >, \lambda (fO, wl). finexp
finexp ='fin := (if wl > WL.smx then O else (if wl<WL.smnthen 1 else 1/2 i) fi))
envB = (<'wl 'fin 'fout 'time 'tO >,
WL.min <="'wl and 'wl <= WL.max and 'wl :='wl + ('fin - 'fout) * (‘time - 't0))

wllnit=3 WL.max=5 WL.min=3 WL.smx=9/& WL.smn =7/2

Symbolic reasoning

* We consider two simple questions about WCI that can be answered
using symbolic execution.

* Q1: Can the water level go above WL.smx"?
 The answer is yes. (using symbolic search and SMT solver)

(v('fin,0) :=31/32) (v('fout,0) :=1/32) (v('wl,0) := 3)
(v(fin,1):=1/2) (v('fout,1):=1/16) (v('wl,1) :=63/16)
(v('fin,R) := 1/2) (v('fout,) :=1/8) (v('wl,2) := 35/8)
(v('fin,3) :=0) (v('fout,d) :=1/2) (v('wl,3) := 19/4)

Symbolic reasoning i

e« Q2: Can the water level reach WL.mx?
 The answer to the second question is, up to time 12, no.

 However if we change the time step to be increments of 2, then the
answer IS yes.

(v('fin,0) := 1) (v('fout,0) :=0 (v('wl,0) :=3
(v('fin,1) :=0) (v('fout,1):=1/2) (v('wl,1) :=5

Soundness and Completeness Theorems

 Theorem 1. (Soundness) Each instance of a symbolic trace of a CRM
IS a (concrete) trace of that CRM

» Theorem 2 (Restricted Completeness). If CRM, C, is symbolically
complete, and

Tr=V;—=rg Vi1 | —1<j<m

is a concrete trace of C such that F j satisfies envB for -1 <j <m, then there is
a symbolic trace, Ir=, of C with environment constraint envB such that Tr is an

iInstance of Irx.

Symbolic Completeness

* Definition 3 (Symbolically complete CRM). A CRM is symbolically
complete if given any (reachable) symbolic valuation (I/V,b), and
substitution, o, that satisfies b; if rule set R is a candidate for
execution in the context of W/|o] then R is a candidate for execution in

the context of W[o’] for any o’ satisfying b.

» Lemma 1 (One (sub)step completeness). If CRM, C, is symbolically
complete, (W,b) a reachable symbolic valuation, o, an instance of
(W,b), V = W][o] the corresponding valuation instance, and R a

candiate rule set wrt V then
V —-r V' implies (W,b) =4 (W', b")

where V' is an instance of (W’,b")

Summary and Future Work

 CRM is a model of concurrent (and distributed) computation that supports

* representing interaction with arbitrary environment

* discrete and continuous actions

 compositional specification via the algebra of compositions and decomposition
 Symbolic execution is step twoards automated verification

* it is sound and complete for large class of CP CRMs
* Future work

* |Implementation in RWL

* Constrained CRM

 Composition via interaction constraints modeling (a)synchrony, flow, space

« Compositional reasoning

That’s all for now !
Questions?

Some References

 Meseguer, J.: Generalized rewrite theories, coherence completion,
and symbolic methods. J. Log. Algebraic Methods Program 110,

100483 (2020)

 Arbab, F., Talcott, C.: Concurrent rules machines. In: Rebeca for actor
analysis in action: essays in the honour of Marjan Sirjani LNCS

Festschrift, vol. 15560. Springer (2025).

* Arbab, F., Talcott, C.: Open CPS: a Symbolic Model. In: Concurrent
Programming, Open Systems and Formal Methods LNCS, vol.

16120. Springer (2025). °

