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Take-home message

- Motivation: separating
complexities of Frege and
extended Frege proofs.

- Answer: notions from
parameterized complexity can
help us obtain efficient Frege
proofs.

- Applications: various
statements, including ones
from combinatorial topology
and computational social
choice.

Caution: Emphasis on "the story", rather than technical
details.
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Reminder: Propositional proof complexity

- Proof systems for
propositional
unsatisfiability, e.g.
resolution

- C or x,
D or x → (C or D);
x, x → □.

- Complexity = minimum
length of a proof.

EXAMPLE: Pigeonhole principle tautologies PHPn
n−1 have

2Ω(n) resolution complexity.

n pigeons in n − 1 holes ⇒ at least two pigeons in same hole !
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Proof complexity of the pigeonhole principle

• Pigeonhole formula(s): PHPn−1
n

• Xi,j = 1 "pigeon i goes to hole j".

• Xi,1 or Xi,2 or . . . or Xi,n−1, 1 ≤ i ≤ n (each pigeon goes
to (at least) one hole)

• Xk,j or Xl,j (pigeons k and l do not go together to hole j).
• Resolution complexity: 2Ω(n) ! (Haken)

Buss (J. Symb. Logic): PHPn−1
n has poly-size Frege proofs.
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Frege proofs?

- @ boundaries of proof complexity: Frege proofs. For
concreteness [Hilbert Ackermann]

• propositional variables p1, p2, . . . ., connectives ¬, or .
• Axiom schematas:

1. ¬(A or A) or A
2. ¬A or (A or B)

3. ¬(A or B) or (B or A)

4. ¬(¬A or B) or (¬(C or A) or (C or B))

• Rule: From A and ¬A or B derive B.

- Other systems, sequent calculus (LK), etc.

All Frege proof systems equivalent (polynomially simulate
eachother) S.A. Cook,R. Reckhow. "The relative efficiency of propositional proof

systems." J. Symb. Logic 44.1(1979):36-50.
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Frege versus extended Frege

- extended Frege: Frege + variable substitutions X ↔ Φ(Y ).
Proves same formulas, perhaps more efficiently.

Open: Is extended Frege more powerful than Frege ?
Bonet, M.L., S. Buss, T. Pitassi. "Are there hard examples for Frege systems?." Feasible

Mathematics II. Birkhauser, 1995. 30-56.

- Most natural formulas: (quasi)polynomial (2log(n)O(1)) Frege
proofs.

- Some examples: “(AB = I ) ⇒ (BA = I )” tautologies [Hrubeš,

Tzameret CCC’2009], Paris-Harrington tautologies [Carlucci, Galesi,

Lauria. CCC, 2011], Frankl Theorem [Buss et al. 2014].
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Wishful thinking (around 2014)

Perhaps translating into SAT a
statement that is (mathematically)
hard to prove yields a natural
candidate for the separation.

• (Martin Kneser, Jaresbericht DMV 1955): Let
n ≥ 2k − 1 ≥ 1. Let c :

(n
k
)
→ [n − 2k +1]. Then there exist

two disjoint sets A and B with c(A) = c(B).
• k = 1: Pigeonhole principle !
• k = 2, 3: combinatorial proofs (Stahl, Garey & Johnson)
• k ≥ 4: proved in 1977 (Lovász) using Algebraic Topology.

Combinatorial proofs (Matousek, Ziegler). "hide" Alg.
Topology No "purely combinatorial" proof (was) known. 7



Kneser’s Conjecture (II)

• the chromatic number of a certain graph Knn,k (at least)
n − 2k + 2. (exact value)

• Vertices:
(n

k
)
. Edges: disjoint sets.

• E.g. k = 2, n = 5: Petersen’s graph has chromatic number
(at least) three.
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First results (paper @ SAT conference)

• naïve encoding XA,k = TRUE iff A colored with color k.
Extends encoding of PHP

• XA,1 or XA,2 or . . . or XA,n−2k+1 "every set is colored with
(at least) one color"

• XA,j or XB,j (A ∩ B = ∅) "no two disjoint sets are colored
with the same color"

• k = 1: PHP (studied by Buss).

- Kneserk
n reduces to Kneserk+1

n+2.

- k = 2: poly-size Frege proofs.

- k = 3: poly-size extended Frege proofs.
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First surprise

(paper @ ICALP ⇒ Information and Computation)

- For every k ≥ 3 Kneserk poly-size extended Frege proofs,
quasi-poly-size Frege proofs.

- For every k ≥ 1 can reduce verification of Kneserk to that
of a finite number of examples.

For every fixed k, Kneserk has combinatorial proofs.

- Mathematically: Kneser follows from octahedral Tucker
lemma (algebraic topology, exponential-size objects).

- "Miniaturization" of this principle: truncated
octahedral Tucker lemma.

- class of propositional formulae, implies Kneser;
candidates for separation.
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Discrete version of Borsuk-Ulam: Octahedral Tucker’s lemma

• Antipodally Symmetric Triangulation T of the n-ball.
Barycentric subdivision, one vertex for each face

• For any labeling of T with vertices from
{±1, . . . ,±(n − 1)} antipodal on the boundary there
exist two adjacent vertices v ∼ w with c(v) = −c(w).

• Intuition: no continuous (a.k.a simplicial) antipodal map
from the n-ball to the n-sphere.
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Second surprise: reverse-engineering proof of Kneser

(second paper @ICALP)

- For every k ≥ 1 can "reduce"
verifying an infinite number of
examples to a finite number.

- Behind this type of reduction:
kernelization.

Algorithmics, technique for preprocessing individual
instances of a combinatorial problem.
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Two-minute parameterized complexity

- Many problems in NP parameterized: instance size n,
parameter k.

- Can get: complexity O(nk).
- Parameterized complexity: want complexity

O(f (k) · poly(n)).
- Kernelization: reduce instance (x, k) to "kernel instance"
(x ′, k ′), s.t. (x, k) ∈ L iff (x ′, k ′) ∈ L and

|x ′|, k ′ ≤ g(k) for some computable g.

- data reduction: algorithm A, maps (x, k) to (x ′, k ′) s.t.
(x, k) ∈ L iff (x ′, k ′) ∈ L and |x ′| ≤ |x|, k ′ ≤ k. Only for
|x| > g(k).

- algorithm: data reduction + bruteforce kernel instances.
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Example

- E.g. Vertex Cover: Given graph G and integer k, decide
whether G has VC of size at most k. set of vertices that
covers all edges.

Rule 1: v isolated vertex in G. G has VC of size k iff
G \ {v} has VC of size k.

Rule 2: v vertex in G, deg(v) > k. G has VC of size k
iff G \ ({v} ∪ N (v)) has VC of size k − 1.

THEOREM (parameterized complexity, informal): If G is a
graph with more than k2 vertices then one of Rules 1 and 2
can be applied.
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Main idea

- "Negative" instance (x, k) of parameterized problem in NP
maps "canonically" to formula Φ(x, k) ∈ SAT .

- If Πi proof for soundness of the i’th reduction step
(xi , ki) = A(xi−1, ki−1) and Πm+1 is a "brute force proof
of unsatisfiability" for the kernel instance then one can
prove Φ(x, k) ∈ SAT by "concatenating" Π1, . . . ,Πm

and Πm+1.

- This (usually) yields extended Frege proofs.

- For Frege proofs need m = O(log n) (m = O(1)).
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Main (meta)Theorem

- Somewhat too complicated to state precisely.

- If soundness of reduction rules can be witnessed efficiently
in Frege, the length of reduction chains is O(1) then
unsatisfiable formulas Φ(x, k) have polynomial size Frege
proofs.

- If soundness of reduction rules can be witnessed efficiently
in Frege, the length of reduction chains is O(log(|Φ(x, k)|))
then unsatisfiable formulas Φ(x, k) have quasipolynomial
Frege proofs.

- otherwise we normally get polynomial size extended Frege
proofs.
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Application: Proof Complexity of Schrijver’s Theorem

- Note: inner cycle already chromatic # 3.
- A ∈

(n
k
)

stable if it doesn’t contain consecutive elements i,
i + 1 (including n, 1).

- Schrijver’s Thm.: Chromatic number of stable Kneser
graph is n − 2k + 2. A. Schrijver. Vertex-critical Subgraphs of Kneser-graphs.

N. Arch. Wiskunde XXVI (1978).

THEOREM: For every k ≥ 1 Schrijver’s theorem has
quasi-poly size Frege proofs (poly-size Frege)

- Proof idea: data reduction of length O(log n). 17



Critical ingredient

We show that Θ(n) color classes c are star-shaped, i.e. sets
colored with color c have an element in common. Need version
of Talbot (Intersecting families of separated sets. Journal of the London Mathematical

Society, 68(1):37-51, 2003) that can be simulated propositionally:

Theorem
If C is a color class that is not star-shaped then
|C| ≤ k2 ·

(n+k−1
k−2

)
.

Thus if there were a n − 2k + 1 coloring c of SKnn,k then we
could drop r = Θ(n) elements of {1, 2, . . . , n} and equally many
colors, and reduce the problem to showing that
χ(SKnn−r ,k) > n − r − 2k + 1.
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A Couple of Applications to Proof Complexity

- classical (ad-hoc) kernelization for VertexCover ⇒ for every
fixed k, negative instances of VC with parameter k have
poly-size Frege proofs.

- crown decomposition for DualColoring ⇒ negative instances
of DualColoring with parameter k poly-size Frege proofs.

- improved (ad-hoc) kernelization for Edge Clique Cover ⇒
negative instances (G,k) of Edge Clique Cover have
extended Frege proofs of poly size and Frege proofs of
quasipoly size.

- sunflower lemma-based kernelization of d-HittingSet ⇒
negative instances of d-HittingSet with parameter k
extended Frege proofs of poly size.
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Applications: Computational Social Choice

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility
results on ranking m objects by n agents.

- Tang & Lin (Artificial Intelligence, 2009): Arrow’s Theorem has
computer-assisted propositional proofs by reducing the
general case to the case n = 2,m = 3. Similar results
(2008) for the Gibbard-Satterthwaite theorem.

- Their proofs: data reductions of length Θ(n + m).

We give: data reductions of length O(n). Consequently,
formulas Arrowm,n ,GSm,n have (i). quasipoly size Frege
proofs (ii). poly size Frege proofs for fixed n. 20



Conclusions

- Theoretically interesting connections between different
areas.

- Work in progress:
• Adapt this program to other techniques from parameterized

complexity, e.g. iterative compression.
• Adapt this program to other proof systems, e.g. SPR−

(Heule,Kiesl & Biere HVC’17, J. Autom. Reasoning ’19, Buss & Thapen SAT’19).
• Proof system that only preserves equisatisfiability, not

equivalence
• Proof complexity for statements in judgment aggregation.

- Proof complexity lower bounds for hard problems in
parameterized complexity ?
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Where I Would Like to Go

- (Combinatorial) Algebraic Topology: works with
exponential size objects.

- Proof Complexity: Cook-Reckow. A proof should be:
• verifiable in polynomial time.
• complete.

What about non-complete/non-constructive proof systems?

• implicit proofs (Krajicek)

• oracle proof systems (Cook)

On the Combinatorial Algebraic Topology side: e.g. R.

Živaljevič. User’s guide to equivariant methods in Combinatorics I+II.
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On a Personal Level ...

Modern Science:

- Specialized.

- Compartmentalized.

- Competitive.

- "Megaconferences".

Personal Philosophy:

(I hope that I convinced you that) sometimes it pays to
straddle multiple scientific topics!
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Hvala/Thank You !
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